/*
* [题意]
* 给出第一天是星期几,给出n,k
* 第i天记忆的单词数是(i^k),其中特殊地:星期六、日记忆的单词数为0
* 问这n天一共记忆了多少个单词?
* [解题方法]
* 1、先说怎么求f[n][k] = (1^k)+(2^k)+(3^k)+...+(n^k)
* 原式 = (0+1)^k + (1+1)^k + (2+1)^k +...+ ((n-1)+1)^k
* 设:C(i,j)为组合数,i种元素取j种的方法数
* 由二次多项式得:
* ((n-1)+1)^k = C(k,0) + C(k,1)*(n-1) +...+ C(k,k)*((n-1)^k)
* ((n-2)+1)^k = C(k,0) + C(k,1)*(n-2) +...+ C(k,k)*((n-2)^k)
* ((n-3)+1)^k = C(k,0) + C(k,1)*(n-3) +...+ C(k,k)*((n-3)^k)
* ... ... ...
* (1+1)^k = C(k,0) + C(k,1)*1 +...+ C(k,k)*1
* (0+1)^k = C(k,0)
* 所以得递推式:
* f[n][k] = C(k,0)*f[n-1][0] + C(k,1)*f[n-1][1] +...+ C(k,k)*f[n-1][k] + 1
* { 注:+1是因为最后一个式子"(0+1)^k = C(k,0)" }
* 所以得矩阵:
* |C(0,0) 0....................0 1| |f[n-1][0]| |f[n][0]|
* |C(1,0) C(1,1) 0.............0 1| |f[n-1][1]| |f[n][1]|
* |...............................| |.........| |.......|
* |C(j,0) C(j,1)...C(j,j) 0....0 1| * |f[n-1][j]| = |f[n][j]|
* |...............................| |.........| |.......|
* |C(k,1) C(k,2) C(k,3)...C(k,k) 1| |f[n-1][k]| |f[n][k]|
* |0...........................0 1| |1 | |1 |
* 2、分别求星期六、日的总值,用上面所求到的值减去这两个本不应该算的值就是答案
* 设第一天是星期p, 则这n天有Ex=(n+p)/7个星期天,有Ey=(n+p-1)/7个星期六
* ①:易得第一个星期天的记忆单词数:7-p+1 = 7+(1-p)
* 设g[Ex][k]为所有星期天所记单词数
* g[Ex][k] = (7+(1-p))^k + (2*7+(1-p))^k + (3*7+(1-p))^k +...+ (Ex*7+(1-p))^k
* 由二次多项式得:
* (Ex*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*(Ex^k)
* ((Ex-1)*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*((Ex-1)^k)
* ((Ex-2)*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*((Ex-2)^k)
* ... ...
* (1*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*1
* 所以得递推式:
* g[Ex][k] = C(k,0)*((1-p)^k)*f[Ex][0] +...+ C(k,k)*(7^k)*f[Ex][k]
* 即在上面的矩阵基础上加一行即可求g[Ex](令n=Ex):
* |C(0,0) 0......................0 1 0| |f[n ][0]| |f[n+1][0]|
* |C(1,0) C(1,1) 0...............0 1 0| |f[n ][1]| |f[n+1][1]|
* |...................................| |.........| |.........|
* |C(j,0) C(j,1)...C(j,j) 0......0 1 0| * |f[n ][j]| = |f[n+1][j]|
* |...................................| |.........| |.........|
* |C(k,0) C(k,1) C(k,2).....C(k,k) 1 0| |f[n ][k]| |f[n+1][k]|
* |0.............................0 1 0| |1 | |1 |
* |C(k,0)*((1-p)^k)...C(k,k)*(7^k) 0 0| |g[n-1][k]| |g[n ][k]|
* ②:易得第一个星期六的记忆单词数:7-p = 7+(-p),同理可求所有星期六的记忆单词总数
* 于是问题解决。
*/
#include
#include
#include
using namespace std;
#define M 15
#define LL long long
#define FF(i, n) for(int i = 0; i < n; i++)
int ans[M], mod = 1000000007;
int ret[M][M], C[M][M];
int init[M][M];
void ini(int n)
{
memset(init, 0, sizeof(init));
FF(i, n-1) FF(j, i+1)
init[i][j] = C[i][j];
FF(i, n) {
ans[i] = 1;
init[i][n-1] = 1;
}
}
void matmul(int a[][M], int b[][M], int n)
{
int tp[M][M] = {0};
FF(i, n) FF(k, n) if(a[i][k]) FF(j, n) if(b[k][j])
tp[i][j] = (tp[i][j] + (LL)a[i][k]*b[k][j]) % mod;
FF(i, n) FF(j, n) a[i][j] = tp[i][j];
}
void matmul(int a[], int b[][M], int n)
{
int tp[M] = {0};
FF(j, n) if(a[j]) FF(i, n) if(b[i][j])
tp[i] = (tp[i] + (LL)b[i][j]*a[j]) % mod;
FF(i, n) a[i] = tp[i];
}
void qmod(int n, int b) //矩阵快速幂
{
FF(i, n) FF(j, n) ret[i][j] = (i==j);
for ( ; b; b >>= 1)
{
if (b & 1) matmul(ret, init, n);
matmul(init, init, n);
}
}
int cal(int a, int b) //快速幂求(a^b) % mod
{
int res = 1;
for ( ; b; b >>= 1)
{
if (b & 1) res = (LL)res * a % mod;
a = (LL)a * a % mod;
}
return res;
}
int run(int n, int b, int x)
{
qmod(n, b);
matmul(ans, ret, n);
return ans[x];
}
int main()
{
int t, cc = 0, p, a, b, c, n, k, i, j;
for (i = 0; i < M; i++) C[i][0] = C[i][i] = 1;
for(i = 2; i < M; i++)
for(j = 1; j < i; j++)
C[i][j] = ((LL)C[i-1][j-1] + C[i-1][j]) % mod;
char s[20];
scanf("%d", &t);
while (t--)
{
scanf("%s", s);
if (s[0] == 'M') p = 1;
else if (s[0] == 'T') {
if (s[1] == 'u') p = 2;
else p = 4;
} else if (s[0] == 'W') p = 3;
else if (s[0] == 'F') p = 5;
else if (s[0] == 'S') {
if (s[1] == 'a') p = 6;
else p = 7;
}
scanf("%d%d", &n, &k);
ini(k+2);
a = run(k+2, n-1, k);
ini(k+2);
for (j = 0; j <= k; j++)
init[k+2][j] = (LL)C[k][j]*cal(mod-p, k-j)%mod * cal(7, j) % mod;
ans[k+2] = 0;
b = run(k+3, (n+p)/7, k+2);
ini(k+2);
for (j = 0; j <= k; j++)
init[k+2][j] = (LL)C[k][j]*cal((mod-p+1)%mod, k-j)%mod
* cal(7, j) % mod;
ans[k+2] = 0;
c = run(k+3, (n+p-1)/7, k+2);
int ans = (((LL)a-b-c)%mod + mod) % mod;
printf("Case %d: %d\n", ++cc, ans);
}
return 0;
}