- YOLOv8 Pose使用RKNN进行推理
い不靠譜︶朱Sir
实用项目部署YOLO人工智能pythonlinuxpip
关注微信公众号:朱sir的小站,发送202411081即可免费获取源代码下载链接一、简单介绍YOLOv8-Pose是一种基于YOLOv8架构的姿态估计模型,能够识别图像中的关键点位置,这些关键点通常表示人体的关节、特征点或其他显著位置。该模型在COCO关键点数据集上训练,适合多种姿势估计任务。二、ONNX推理1.首先需要先将Pytorch模型转换为Onnx模型,下载pt模型这里给出官方的权重下载地
- vue3-video-play 插件在 Vue 3 项目上的应用
放逐者-保持本心,方可放逐
vue3应用vue.js前端javascriptvue3-video-play
文章目录vue3-video-play插件在Vue3项目上的应用一、插件简介二、插件安装三、插件组件应用示例1.局部引入组件2.全局引入组件四、需要注意的事项五、本地环境将`package.json`中`"module":"./dist/index.es.js"`改为`"module":"./dist/index.mjs"`问题解析探索问题描述原因分析解决方案格式及应用实例vue3-video-p
- SQL面试题练习 —— 取出累计值与1000差值最小的记录
夏木夕
SQLsql面试数据库
题目来源:滴滴目录1题目2建表语句3题解1题目已知有表t_cost_detail包含id和money两列,id为自增,请累加计算money值,并求出累加值与1000差值最小的记录。+-----+--------+|id|money|+-----+--------+|1|200||2|300||3|200||4|100||5|150||6|80||7|100||8|200|+-----+------
- 【自然语言处理|迁移学习-08】:中文语料完型填空
爱学习不掉头发
深度学习自然语言处理(NLP)自然语言处理迁移学习人工智能
文章目录1中文语料完型填空任务介绍2数据集加载及处理3定义下游任务模型4模型训练5.模型测试1中文语料完型填空任务介绍任务介绍:完成中文语料完型填空完型填空是一个分类问题,[MASK]单词有21128种可能数据构建实现分析:使用迁移学习方式完成使用预训练模型bert模型提取文特征,后面添加全连接层和softmax进行单标签多分类2数据集加载及处理数据介绍:数据文件有三个train.csv,test
- 马斯克的Grok-3:技术突破与行业冲击的深度解析
♢.*
马斯克人工智能大模型xAIGrok3
一、技术架构与核心突破超大规模算力集群Grok-3基于xAI自研的Colossus超级计算机训练完成,搭载20万块英伟达H100GPU,累计消耗2亿GPU小时,算力投入是前代Grok-2的10倍48。这一规模远超行业平均水平,例如中国团队DeepSeek-V3的算力消耗仅为Grok-3的1/2634。技术挑战:团队在122天内完成首期10万块GPU部署,克服了散热、电力供应等工程难题1。思维链推理
- idea error invoking main method (亲测有效)
大葱蘸个酱
intellij-ideajavaide
一、前言我的idea是IntelliJIDEA2021.3.2版本,前一天测试javagc回收,把idea的堆内存调成了28m和56m,导致今天idea无法启动,提示errorinvokingmainmethod二、解决方案把配置文件中的配置调整正常,问题解决-Xms128m最小堆内存-Xmx750m最大堆内存-Xms最小堆内存-Xmx最大堆内存其它问题导致的无法启动解决方案:管理员模式下面cmd
- BP 神经网络在考古数据分析中的应用
fanxbl957
人工智能理论与实践神经网络数据分析人工智能
BP神经网络在考古数据分析中的应用摘要:本文深入探讨了BP神经网络在考古数据分析领域的应用。首先阐述了考古数据分析的重要性以及传统分析方法的局限性。随后详细介绍了BP神经网络的结构、原理与训练算法。通过丰富的代码示例展示了如何运用BP神经网络进行考古文物的分类鉴定、年代预测以及遗址空间分布分析等任务,涵盖数据预处理、网络构建、模型训练与评估等关键环节。分析了该应用的优势与局限性,并对其在考古数据分
- 动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
向哆哆
YOLO目标跟踪深度学习YOLOv8
文章目录动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度1.什么是动态蛇形卷积?2.YOLOv8的卷积改进2.1常规卷积与动态蛇形卷积的区别2.2动态蛇形卷积的实现原理2.3YOLOv8中集成动态蛇形卷积3.手把手实现动态蛇形卷积3.1安装依赖3.2设计动态蛇形卷积层3.3集成到YOLOv8中3.4训练与优化4.动态蛇形卷积的进一步优化4.1蛇形路径的动态学习4.1.1学习动态路径
- 大模型(含deepseek r1)本地部署利器ollama的API操作指南
人工智能llm
ollama介绍:Ollama是一个开源的大型语言模型(LLM)平台,旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。它支持多种预训练的大型语言模型(如LLaMA2、Mistral、Gemma、DeepSeek等),并提供了一个简单高效的方式来加载和使用这些模型。出现Error:somethingwentwrong,pleaseseetheollamaserverlogsfordet
- DeepSeek与ChatGPT:AI语言模型的全面对决
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3chatgpt人工智能语言模型
DeepSeek(深度求索)与ChatGPT作为当前备受关注的两大AI语言模型,在技术架构、应用场景和性能表现上各有特色。以下从六大维度展开全面对比,为不同需求场景提供选择参考:一、核心技术对比维度DeepSeekChatGPT架构设计混合专家系统(MoE)+自研深度优化架构Transformer架构(GPT-3.5/4系列)训练策略万亿token中文语料预训练+领域强化学习多语言混合训练+RLH
- DeepSeek和ChatGPT的全面对比
陈皮话梅糖@
AI编程
一、模型基础架构对比(2023技术版本)维度DeepSeekChatGPT模型家族LLAMA架构改进GPT-4优化版本参数量级开放7B/35B/120B闭源175B+位置编码RoPE+NTK扩展ALiBiAttention机制FlashAttention-3FlashAttention-2激活函数SwiGLUProGeGLU训练框架DeepSpeed+Megatron定制内部框架上下文窗口32k(
- 线性回归理论
狂踹瘸子那条好脚
python
###线性回归与Softmax回归####线性回归线性回归是一种用于估计连续值的回归方法。它的应用场景非常广泛,比如在房地产市场中,参观一个房子后,我们可以通过线性回归模型来估计房子的价格,从而决定出价。线性回归的核心思想是通过训练数据来学习参数,使得模型的预测值与真实值之间的差异最小化。在神经网络中,线性回归可以看作是一个单层神经网络。通过损失函数来衡量预测值与真实值之间的差异,常用的损失函数包
- muzero 算法原理
战神哥
Muzero算法是一种通用的强化学习算法,它可以在没有预先设定策略的情况下进行学习。它通过模拟整个游戏进程来自我学习,并通过回报函数来评估每一步的决策。Muzero算法的核心部分是一个叫做模型的神经网络,它会对游戏的状态进行预测,预测未来的游戏状态。另一部分是策略网络,它会根据当前状态预测每一步的最优决策。Muzero算法通过不断地训练模型和策略网络,来提高它们的准确性,从而使得机器学到了如何玩游
- 【产品小白】产品思维与技术思维的区别
百事不可口y
产品经理的一步一步产品经理用户运营内容运营学习人工智能大数据新媒体运营
一、两种思维的本质差异与互补性维度产品思维技术思维核心关注点用户价值(痛点/爽点)、商业目标(盈利/增长)技术实现(架构/性能)、系统稳定性(可用性/扩展性)决策依据用户行为数据、市场趋势、ROI模型技术复杂度、开发成本、技术债评估问题解决路径从场景出发,构建业务闭环(如“用户如何完成支付?”)从实现出发,拆解技术模块(如“支付接口如何鉴权?”)风险意识担心需求伪命题(无人使用)担忧系统崩溃(高并
- SAT-3D饮食行为训练系统在营养教学中的应用心得体会
上海GR
经验分享
在营养学领域的探索之旅中,我有幸深入接触并实践了SAT-3D膳食诊断和饮食行为训练系统(以下简称SAT-3D系统,研制单位:上海共荣医学科技有限公司),这一经历不仅极大地拓宽了我的专业视野,也让我在营养实训教学上获得了前所未有的启示与感悟。SAT-3D系统,作为一个集科学性与实用性于一体的膳食评估与行为干预工具,其在营养实训教学中的应用,无疑为传统的教学模式注入了一股新鲜血液,让我深刻体会到科技赋
- 基于Kitti数据集实现MMDetection3D点云物体检测训练
Xian-HHappy
技术知识点kitti三维点云无人驾驶MMDetection3D人工智能计算机视觉目标检测
DataBall助力快速掌握数据集的信息和使用方式,会员享有百种数据集,持续增加中。需要更多数据资源和技术解决方案,知识星球:“DataBall-X数据球(free)”贵在坚持!-----------------------------------------------------------------------------------------------MMDetection3D环境安
- AI服务器散热黑科技:让芯片“冷静”提速
小深ai硬件分享
人工智能深度学习服务器
AI服务器为何需要散热黑科技在人工智能飞速发展的当下,AI服务器作为核心支撑,作用重大。从互联网智能推荐,到医疗疾病诊断辅助,从金融风险预测,到教育个性化学习,AI服务器广泛应用,为各类复杂人工智能应用提供强大算力。然而,AI服务器在运行时面临着严峻的散热挑战。随着人工智能技术的不断发展,对AI服务器的计算能力要求越来越高,这使得服务器的功率密度急剧增加。以GPT-4的训练为例,它需要大量的GPU
- 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?
是纯一呀
WSLDockerAIspark分布式mllib
如果MLlib中没有你所需要的模型,并且不打算结合更强大的框架(如TensorFlowOnSpark或Horovod),仍然可以使用Spark进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。模型训练阶段将模型的训练任务分配到Spark集群的各个节点。数据并行:每个节点会处理数据的不同部分,并计算该部分的梯度或模型参数。自定义算法:如果使用的是自定义算法(
- 使用BLIP模型生成图像描述的可查询索引
dgay_hua
python计算机视觉开发语言
在本篇文章中,我们将介绍如何使用预训练的SalesforceBLIP图像描述模型,生成一个可查询的图像描述索引。我们将使用ImageCaptionLoader来加载图像,并通过一系列步骤生成查询索引。使用示例代码进行演示,帮助读者理解和实践。技术背景介绍随着计算机视觉技术的发展,图像描述生成成为了重要的研究领域。通过对图像内容自动生成文字描述,可以大大提高对图像信息的检索和管理效率。Salesfo
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- DeepSeek掀起推理服务器新风暴,AI应用迎来变革转折点?
小深ai硬件分享
人工智能大数据
AI浪潮下,推理服务器崭露头角在科技飞速发展的当下,AI是耀眼明星,席卷各行业,深刻改变生活与工作模式,从语音助手到医疗诊断、金融风险预测,AI无处不在。其发展分数据收集整理、模型训练、推理应用三个阶段,过去重模型训练,如今大量预训练模型出现,如何高效应用成新挑战,推理服务器应运而生。推理服务器是运行AI模型、对输入数据实时分析预测的硬件设备,堪称AI应用“幕后英雄”。在自动驾驶、智能安防、电商推
- 用 TensorFlow 搭建简单的手写数字识别模型
lozhyf
工作面试学习tensorflow人工智能python
一、引言手写数字识别是机器学习领域中一个经典且基础的问题,它在很多实际场景中都有广泛的应用,比如邮政系统中的邮件分拣、银行支票金额识别等。TensorFlow是一个强大的开源机器学习框架,由Google开发并维护,它提供了丰富的工具和接口,能帮助我们快速搭建和训练深度学习模型。在这篇博客中,我们将使用TensorFlow构建一个简单的神经网络模型,用于识别手写数字。二、环境准备在开始之前,你需要安
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- 使用Yuan 2.0与LangChain构建智能聊天应用:完整指南
scaFHIO
langchainpython
技术背景介绍Yuan2.0是IEIT系统开发的新一代基础大语言模型,包括Yuan2.0-102B、Yuan2.0-51B和Yuan2.0-2B三种版本。相比之前的Yuan1.0,Yuan2.0使用了更广泛的高质量预训练数据,并通过指令微调数据集增强了模型的语义理解、数学推理、编程知识等能力。为了方便开发者集成,Yuan2.0提供了兼容OpenAIAPI的服务接口。本文将介绍如何通过LangChai
- 训练与优化
钰见梵星
小土堆PyTorch深度学习深度学习pytorch人工智能
训练与优化损失函数与反向传播损失函数能够衡量神经网络输出与目标值之间的误差,同时为反向传播提供依据,计算梯度来优化网络中的参数。torch.nn.L1Loss计算所有预测值与真实值之间的绝对差。参数为reduction:'none':不对损失进行任何求和或平均,返回每个元素的损失。'mean':对损失进行平均,默认选项。'sum':对所有样本的损失进行求和。importtorchinput=tor
- Pytorch实现之利用特征分布的差异来指导GAN的训练
这张生成的图像能检测吗
优质GAN模型训练自己的数据集GAN系列pytorch生成对抗网络人工智能神经网络深度学习计算机视觉机器学习
简介简介:FIDGAN通过将FID损失引入GAN的训练过程,显著提升了生成图像的质量。其核心思想是利用特征分布的差异来指导生成器的训练,同时通过使用轻量级的MobileNet-v3提高了计算效率。这种方法在图像生成任务中具有广泛的应用前景。论文题目:FIDGAN:AGenerativeAdversarialNetworkwithAnInceptionDistance(FIDGAN:具有初始距离的生
- 使用LangChain与Clarifai模型进行交互
vaidfl
langchain交互python
在现代AI应用开发中,Clarifai提供了一个完整的AI生命周期管理平台,包括数据探索、数据标注、模型训练、评估和推理。本文将探讨如何使用LangChain库与Clarifai的模型进行交互。技术背景介绍Clarifai是一个全面的AI平台,专注于模型的构建和部署。要开始使用Clarifai,你需要一个账户和个人访问令牌(PAT)。确保先在Clarifai获取或创建你的PAT。核心原理解析通过L
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- 2024年03月CCF-GESP编程能力等级认证Python编程四级真题解析
码农StayUp
pythonCCFGESP青少年编程
本文收录于专栏《Python等级认证CCF-GESP真题解析》,专栏总目录:点这里,订阅后可阅读专栏内所有文章。一、单选题(共15题,共30分)第1题小杨的父母最近刚刚给他买了一块华为手表,他说手表上跑的是鸿蒙,这个鸿蒙是.()A.小程序B.计时器C.操作系统D.神话人物答案:C本题属于考察计算机基础知识。鸿蒙是操作系统,操作系统是管理计算机硬件与软件资源的程序,同时也是计算机系统的内核与基石。它
- UVA10608 Friends 题解
W9095
算法c++
0x01STEP1读题审题UVA10608Friends题面翻译读完题就知道,这题用并查集。本人太弱,就用带权并查集做。0x02STEP2主要步骤实际上,带权并查集的几种操作并不复杂,是基础并查集的扩展版。初始化:for(inti=1;iusingnamespacestd;intn,m,t,f[300000],num[300000];intgetf(intx){if(f[x]==x)returnx
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name