Cifar-10 是由 Hinton 的学生 Alex Krizhevsky、Ilya Sutskever 收集的一个用于普适物体识别的计算机视觉数据集,它包含 60000 张 32 X 32 的 RGB 彩色图片,总共 10 个分类。其中,包括 50000 张用于训练集,10000 张用于测试集。
可视化代码:
import pickle as p
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as plimg
from PIL import Image
def load_CIFAR_batch(filename):
""" load single batch of cifar """
with open(filename, 'rb')as f:
datadict = p.load(f,encoding='latin1')
print(datadict.keys())
X = datadict['data']
Y = datadict['labels']
X = X.reshape(10000, 3, 32, 32)
Y = np.array(Y)
return X, Y
if __name__ == "__main__":
imgX, imgY = load_CIFAR_batch("C:/Users/DaDaDa/Downloads/cifar-10-batches-py/data_batch_1")
for i in range(imgX.shape[0]):
imgs = imgX[i - 1]
if i < 100:#只循环100张图片,这句注释掉可以便利出所有的图片,图片较多,可能要一定的时间
img0 = imgs[0]
img1 = imgs[1]
img2 = imgs[2]
i0 = Image.fromarray(img0)
i1 = Image.fromarray(img1)
i2 = Image.fromarray(img2)
img = Image.merge("RGB",(i0,i1,i2))
name = "img" + str(i) + ".png"
img.save("E:/python/课件/cifar_data/images/"+name,"png")#文件夹下是RGB融合后的图像
Tensorflow里面提供了使用CIFAR-10数据集的方法
1、从Tensorflow官网下载models模块,在 【tensorflow-models\tutorials\image\cifar10】 路径下有以下文件:
cifar10_download.py 下载数据集
cifar10_input.py 读取cifar-10数据集文件
cifar10.py 建立cifar-10模型
cifar10_train.py 训练cifar-10数据集
cifar10_multi_gpu_train.py 在多GPU上训练cifar-10数据集
cifar10_eval.py 评估cifar-10模型的预测性能
整体框架代码:
def inference(images):
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv1)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
# conv2
with tf.variable_scope('conv2') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
_activation_summary(conv2)
# norm2
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
# pool2
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# local3
with tf.variable_scope('local3') as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, 384],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
_activation_summary(local3)
# local4
with tf.variable_scope('local4') as scope:
weights = _variable_with_weight_decay('weights', shape=[384, 192],
stddev=0.04, wd=0.004)
biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
_activation_summary(local4)
# linear layer(WX + b),
# We don't apply softmax here because
# tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
# and performs the softmax internally for efficiency.
with tf.variable_scope('softmax_linear') as scope:
weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
stddev=1/192.0, wd=0.0)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
_activation_summary(softmax_linear)
return softmax_linear
最近在研究tensorflow自带的例程speech_command,顺便学习tensorflow的一些基本用法。
其中tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝。
而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布图并在tensorboard显示。
tf.summary有诸多函数:
用来显示标量信息,其格式为:
tf.summary.scalar(tags, values, collections=None, name=None)
例如:tf.summary.scalar(‘mean’, mean)
一般在画loss,accuary时会用到这个函数。
用来显示直方图信息,其格式为:
tf.summary.histogram(tags, values, collections=None, name=None)
例如: tf.summary.histogram(‘histogram’, var)
一般用来显示训练过程中变量的分布情况
分布图,一般用于显示weights分布
可以将文本类型的数据转换为tensor写入summary中:
例如:
text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))
输出带图像的probuf,汇总数据的图像的的形式如下: ’ tag /image/0’, ’ tag /image/1’…,如:input/image/0等。
格式:tf.summary.image(tag, tensor, max_images=3, collections=None, name=None)
展示训练过程中记录的音频
merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。
格式:tf.summaries.merge_all(key=‘summaries’)
指定一个文件用来保存图。
格式:tf.summary.FileWritter(path,sess.graph)
可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中
Tensorflow Summary 用法示例:
tf.summary.scalar('accuracy',acc) #生成准确率标量图
merge_summary = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存
此时开启tensorborad:
便能看见accuracy曲线了。
另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:
格式:tf.summary.merge(inputs, collections=None, name=None)
一般选择要保存的信息还需要用到tf.get_collection()函数
示例:
tf.summary.scalar('accuracy',acc) #生成准确率标量图
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存
使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的
tf.GraphKeys.SUMMARIES 是summary在collection中的标志。
当然,也可以直接:
acc_summary = tf.summary.scalar('accuracy',acc) #生成准确率标量图
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)]) #这里的[]不可省
如果要在tensorboard中画多个数据图,需定义多个tf.summary.FileWriter并重复上述过程