padding参数为SAME和VALID的区别

1..讲解

卷积:conv2

  • "VALID" = without padding:

       inputs:         1  2  3  4  5  6  7  8  9  10 11 (12 13)
                      |________________|                dropped
                                     |_________________|
  • "SAME" = with zero padding:

                   pad|                                      |pad
       inputs:      0 |1  2  3  4  5  6  7  8  9  10 11 12 13|0  0
                   |________________|
                                  |_________________|
                                                 |________________|

In this example:

  • Input width = 13
  • Filter width = 6
  • Stride = 5
  • "VALID" only ever drops the right-most columns (or bottom-most rows).
  • "SAME" tries to pad evenly left and right, but if the amount of columns to be added is odd, it will add the extra column to the right, as is the case in this example (the same logic applies vertically: there may be an extra row of zeros at the bottom).

The TensorFlow Convolution example gives an overview about the difference betweenSAME andVALID :

  • For the SAME padding, the output height and width are computed as:

    out_height = ceil(float(in_height) / float(strides[1]))

    out_width = ceil(float(in_width) / float(strides[2]))

And

  • For the VALID padding, the output height and width are computed as:

    out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))

    out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))

池化:max_pool

I'll give an example to make it clearer:

  • x: input image of shape [2, 3], 1 channel
  • valid_pad: max pool with 2x2 kernel, stride 2 and VALID padding.
  • same_pad: max pool with 2x2 kernel, stride 2 and SAME padding (this is theclassic way to go)

The output shapes are:

  • valid_pad: here, no padding so the output shape is [1, 1]
  • same_pad: here, we pad the image to the shape [2, 4] (with-inf and then apply max pool), so the output shape is [1, 2]

x = tf.constant([[1., 2., 3.],
                 [4., 5., 6.]])

x = tf.reshape(x, [1, 2, 3, 1])  # give a shape accepted by tf.nn.max_pool

valid_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID')
same_pad = tf.nn.max_pool(x, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME')

valid_pad.get_shape() == [1, 1, 1, 1]  # valid_pad is [5.]
same_pad.get_shape() == [1, 1, 2, 1]   # same_pad is  [5., 6.]

2.示例+讲解

输出5×5的feature map

[python]   view plain  copy
  1. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  

6.如果卷积核有多个

[python]   view plain  copy
  1. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  

此时输出7张5×5的feature map

7.步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]

[python]   view plain  copy
  1. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
此时,输出7张3×3的feature map

[python]   view plain  copy
  1. x.x.x  
  2. .....  
  3. x.x.x  
  4. .....  
  5. x.x.x  
8.如果batch值不为1,同时输入10张图

[python]   view plain  copy
  1. input = tf.Variable(tf.random_normal([10,5,5,5]))  
  2. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  3.   
  4. op = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
每张图,都有7张3×3的feature map,输出的shape就是[10,3,3,7]


最后,把程序总结一下:

[python]   view plain  copy
  1. import tensorflow as tf  
  2. #case 2  
  3. input = tf.Variable(tf.random_normal([1,3,3,5]))  
  4. filter = tf.Variable(tf.random_normal([1,1,5,1]))  
  5.   
  6. op2 = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
  7. #case 3  
  8. input = tf.Variable(tf.random_normal([1,3,3,5]))  
  9. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  10.   
  11. op3 = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
  12. #case 4  
  13. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  14. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  15.   
  16. op4 = tf.nn.conv2d(input, filter, strides=[1111], padding='VALID')  
  17. #case 5  
  18. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  19. filter = tf.Variable(tf.random_normal([3,3,5,1]))  
  20.   
  21. op5 = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  
  22. #case 6  
  23. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  24. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  25.   
  26. op6 = tf.nn.conv2d(input, filter, strides=[1111], padding='SAME')  
  27. #case 7  
  28. input = tf.Variable(tf.random_normal([1,5,5,5]))  
  29. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  30.   
  31. op7 = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
  32. #case 8  
  33. input = tf.Variable(tf.random_normal([10,5,5,5]))  
  34. filter = tf.Variable(tf.random_normal([3,3,5,7]))  
  35.   
  36. op8 = tf.nn.conv2d(input, filter, strides=[1221], padding='SAME')  
  37.   
  38. init = tf.initialize_all_variables()  
  39. with tf.Session() as sess:  
  40.     sess.run(init)  
  41.     print("case 2")  
  42.     print(sess.run(op2))  
  43.     print("case 3")  
  44.     print(sess.run(op3))  
  45.     print("case 4")  
  46.     print(sess.run(op4))  
  47.     print("case 5")  
  48.     print(sess.run(op5))  
  49.     print("case 6")  
  50.     print(sess.run(op6))  
  51.     print("case 7")  
  52.     print(sess.run(op7))  
  53.     print("case 8")  
  54.     print(sess.run(op8))  
因为是随机初始化,我的结果是这样的:

[python]   view plain  copy
  1. case 2  
  2. [[[[-0.64064658]  
  3.    [-1.82183945]  
  4.    [-2.63191342]]  
  5.   
  6.   [[ 8.05008984]  
  7.    [ 1.66023612]  
  8.    [ 2.53465152]]  
  9.   
  10.   [[-3.51703644]  
  11.    [-5.92647743]  
  12.    [ 0.55595356]]]]  
  13. case 3  
  14. [[[[ 10.53139973]]]]  
  15. case 4  
  16. [[[[ 10.45460224]  
  17.    [  6.23760509]  
  18.    [  4.97157574]]  
  19.   
  20.   [[  3.05653667]  
  21.    [-11.43907833]  
  22.    [ -2.05077457]]  
  23.   
  24.   [[ -7.48340607]  
  25.    [ -0.90697062]  
  26.    [  3.27171206]]]]  
  27. case 5  
  28. [[[[  5.30279875]  
  29.    [ -2.75329947]  
  30.    [  5.62432575]  
  31.    [-10.24609661]  
  32.    [  0.12603235]]  
  33.   
  34.   [[  0.2113893 ]  
  35.    [  1.73748684]  
  36.    [ -3.04372549]  
  37.    [ -7.2625494 ]  
  38.    [-12.76445198]]  
  39.   
  40.   [[ -1.57414591]  
  41.    [ -3.39802694]  
  42.    [ -6.01582575]  
  43.    [ -1.73042905]  
  44.    [ -3.07183361]]  
  45.   
  46.   [[  1.41795194]  
  47.    [ -2.02815866]  
  48.    [-17.08983231]  
  49.    [ 11.98958111]  
  50.    [  2.44879103]]  
  51.   
  52.   [[  0.29902667]  
  53.    [ -3.19712877]  
  54.    [ -2.84978414]  
  55.    [ -2.71143317]  
  56.    [  5.99366283]]]]  
  57. case 6  
  58. [[[[ 12.02504349   4.35077286   2.67207813   5.77893162   6.98221684  
  59.      -0.96858567  -8.1147871 ]  
  60.    [ -0.02988982  -2.52141953  15.24755192   6.39476395  -4.36355495  
  61.      -2.34515095   5.55743504]  
  62.    [ -2.74448752  -1.62703776  -6.84849405  10.12248802   3.7408421  
  63.       4.71439075   6.13722801]  
  64.    [  0.82365227  -1.00546622  -3.29460764   5.12690163  -0.75699937  
  65.      -2.60097408  -8.33882809]  
  66.    [  0.76171923  -0.86230004  -6.30558443  -5.58426857   2.70478535  
  67.       8.98232937  -2.45504045]]  
  68.   
  69.   [[  3.13419819 -13.96483231   0.42031103   2.97559547   6.86646557  
  70.      -3.44916964  -0.10199898]  
  71.    [ 11.65359879  -5.2145977    4.28352737   2.68335319   3.21993709  
  72.      -6.77338028   8.08918095]  
  73.    [  0.91533852  -0.31835344  -1.06122255  -9.11237717   5.05267143  
  74.       5.6913228   -5.23855162]  
  75.    [ -0.58775592  -5.03531456  14.70254898   9.78966522 -11.00562763  
  76.      -4.08925819  -3.29650426]  
  77.    [ -2.23447251  -0.18028721  -4.80610704  11.2093544   -6.72472  
  78.      -2.67547607   1.68422937]]  
  79.   
  80.   [[ -3.40548897  -9.70355129  -1.05640507  -2.55293012  -2.78455877  
  81.     -15.05377483  -4.16571808]  
  82.    [ 13.66925812   2.87588191   8.29056358   6.71941566   2.56558466  
  83.      10.10329056   2.88392687]  
  84.    [ -6.30473804  -3.3073864   12.43273926  -0.66088223   2.94875336  
  85.       0.06056046  -2.78857946]  
  86.    [ -7.14735603  -1.44281793   3.3629775   -7.87305021   2.00383091  
  87.      -2.50426936  -6.93097973]  
  88.    [ -3.15817571   1.85821593   0.60049552  -0.43315536  -4.43284273  
  89.       0.54264796   1.54882073]]  
  90.   
  91.   [[  2.19440389  -0.21308756  -4.35629082  -3.62100363  -0.08513772  
  92.      -0.80940366   7.57606506]  
  93.    [ -2.65713739   0.45524287 -16.04298019  -5.19629049  -0.63200498  
  94.       1.13256514  -6.70045137]  
  95.    [  8.00792599   4.09538221  -6.16250181   8.35843849  -4.25959206  
  96.      -1.5945878   -7.60996151]  
  97.    [  8.56787586   5.85663748  -4.38656425   0.12728286  -6.53928804  
  98.       2.3200655    9.47253895]  
  99.    [ -6.62967777   2.88872099  -2.76913023  -0.86287498  -1.4262073  
  100.      -6.59967232   5.97229099]]  
  101.   
  102.   [[ -3.59423327   4.60458899  -5.08300591   1.32078576   3.27156973  
  103.       0.5302844   -5.27635145]  
  104.    [ -0.87793881   1.79624665   1.66793108  -4.70763969  -2.87593603  
  105.      -1.26820421  -7.72825718]  
  106.    [ -1.49699068  -3.40959787  -1.21225107  -1.11641395  -8.50123024  
  107.      -0.59399474   3.18010235]  
  108.    [ -4.4249506   -0.73349547  -1.49064219  -6.09967899   5.18624878  
  109.      -3.80284953  -0.55285597]  
  110.    [ -1.42934585   2.76053572  -5.19795799   0.83952439  -0.15203482  
  111.       0.28564462   2.66513705]]]]  
  112. case 7  
  113. [[[[  2.66223097   2.64498258  -2.93302107   3.50935125   4.62247562  
  114.       2.04241085  -2.65325522]  
  115.    [ -0.03272867  -1.00103927  -4.3691597    2.16724801   7.75251007  
  116.      -4.6788125   -0.89318085]  
  117.    [  4.74175072  -0.80443329  -1.02710629  -6.68772554   4.57605314  
  118.      -3.72993755   4.79951382]]  
  119.   
  120.   [[  5.249547     8.92288399   7.10703182  -9.10498428  -7.43814278  
  121.      -8.69616318   1.78862095]  
  122.    [  7.53669024 -14.52316284  -2.55870199  -1.11976743   3.81035042  
  123.       2.45559502  -2.35436153]  
  124.    [  3.93275881   5.11939669  -4.7114296  -11.96386623   2.11866689  
  125.       0.57433248  -7.19815397]]  
  126.   
  127.   [[  0.25111672   1.40801668   1.28818977  -2.64093828   0.98182392  
  128.       3.69512987   4.78833389]  
  129.    [  0.30391204 -10.26406097   6.05877018  -6.04775047   8.95922089  
  130.       0.80235004  -5.4520669 ]  
  131.    [ -7.24697018  -2.33498096 -10.20039558  -1.24307609   3.99351597  
  132.      -8.1029129    2.44411373]]]]  
  133. case 8  
  134. [[[[ -6.84037447e+00   1.33321762e-01  -5.09891272e+00   5.55682087e+00  
  135.       8.22002888e+00  -4.94586229e-02   4.19012117e+00]  
  136.    [  6.79884481e+00   1.21652853e+00  -5.69557810e+00  -1.33555794e+00  
  137.       3.24849486e-01   4.88868570e+00  -3.90220714e+00]  
  138.    [ -3.53190374e+00  -4.11765718e+00   4.54340839e+00   1.85549557e+00  
  139.      -3.38682461e+00   2.62719369e+00  -4.98658371e+00]]  
  140.   
  141.   [[ -9.86354351e+00  -6.76713943e+00   3.62617874e+00  -6.16720629e+00  
  142.       1.96754158e+00  -4.54203081e+00  -1.37485743e+00]  
  143.    [ -1.76783955e+00   2.35163045e+00  -2.21175838e+00   3.83091879e+00  
  144.       3.16964531e+00  -7.58307219e+00   4.71943617e+00]  
  145.    [  1.20776439e+00   4.86006308e+00   1.04233503e+01  -7.82327271e+00  
  146.       5.39195156e+00  -6.31672382e+00   1.35577369e+00]]  
  147.   
  148.   [[ -3.65947580e+00  -1.98961139e+00   7.53771305e+00   2.79224634e-01  
  149.      -2.90050888e+00  -3.57466817e+00  -6.33232594e-01]  
  150.    [  5.89931488e-01   2.83219159e-01  -1.65850735e+00  -6.45545387e+00  
  151.      -1.17044592e+00   1.40343285e+00   5.74970901e-01]  
  152.    [ -8.58810043e+00  -1.25172977e+01   6.84177876e-01   3.80004168e+00  
  153.      -1.54420209e+00  -3.32161427e+00  -1.05423713e+00]]]  
  154.   
  155.   
  156.  [[[ -4.82677078e+00   3.11167526e+00  -4.32694483e+00  -4.77198696e+00  
  157.       2.32186103e+00   1.65402293e-01  -5.32707453e+00]  
  158.    [  3.91779566e+00   6.27949667e+00   2.32975650e+00  -1.06336937e+01  
  159.       4.44044876e+00   8.08288479e+00  -5.83346319e+00]  
  160.    [ -2.82141399e+00  -9.16103745e+00   6.98908520e+00  -5.66505909e+00  
  161.      -2.11039782e+00   2.27499461e+00  -5.74120235e+00]]  
  162.   
  163.   [[  6.71680808e-01  -4.01104212e+00  -4.61760712e+00   1.02667952e+01  
  164.      -8.21200657e+00  -8.57054043e+00   1.71461976e+00]  
  165.    [  2.40794683e+00  -2.63071585e+00   9.68963623e+00  -4.51778412e+00  
  166.      -3.91073084e+00  -5.91874409e+00   9.96273613e+00]  
  167.    [  2.67705870e+00   2.85607010e-01   2.45853162e+00   4.44810390e+00  
  168.      -2.11300468e+00  -5.77583075e+00   2.83322239e+00]]  
  169.   
  170.   [[ -8.21949577e+00  -7.57754421e+00   3.93484974e+00   2.26189137e+00  
  171.      -3.49395227e+00  -6.40283823e+00  -6.00450039e-01]  
  172.    [  2.95964479e-02  -1.19976890e+00   5.38537979e+00   4.62369967e+00  
  173.       3.89780998e+00  -6.36872959e+00   7.12107182e+00]  
  174.    [ -8.85006547e-01   1.92706418e+00   3.26668215e+00   2.03566647e+00  
  175.       1.44209075e+00  -6.48463774e+00  -8.33671093e-02]]]  
  176.   
  177.   
  178.  [[[ -2.64583921e+00   3.86011934e+00   4.18198538e+00   3.50338411e+00  
  179.       6.35944796e+00  -4.28423309e+00   4.87355423e+00]  
  180.    [  4.42271233e+00   3.92883778e+00  -5.59371090e+00   4.98251200e+00  
  181.      -3.45068884e+00   2.91921115e+00   1.03779554e+00]  
  182.    [  1.36162388e+00  -1.06808968e+01  -3.92534947e+00   1.85111761e-01  
  183.      -4.87255526e+00   1.66666222e+01  -1.04918976e+01]]  
  184.   
  185.   [[ -4.34632540e+00   1.74614882e+00  -2.89012527e+00  -8.74067783e+00  
  186.       5.06610107e+00   1.24989772e+00  -3.06433105e+00]  
  187.    [  2.49973416e+00   2.14041996e+00  -4.71008825e+00   7.39326143e+00  
  188.       3.94770741e+00   8.23049164e+00  -1.67046225e+00]  
  189.    [ -2.94665837e+00  -4.58543825e+00   7.21219683e+00   1.09780006e+01  
  190.       5.17258358e+00   7.90257788e+00  -2.13929534e+00]]  
  191.   
  192.   [[  4.20402241e+00  -2.98926830e+00  -3.89006615e-01  -8.16001511e+00  
  193.      -2.38355541e+00   1.42584383e+00  -5.46632290e+00]  
  194.    [  5.52395058e+00   5.09255171e+00  -1.08742390e+01  -4.96262169e+00  
  195.      -1.35298109e+00   3.65663052e-01  -3.40589857e+00]  
  196.    [ -6.95647061e-01  -4.12855625e+00   2.66609401e-01  -9.39565372e+00  
  197.      -3.85058141e+00   2.51248240e-01  -5.77149725e+00]]]  
  198.   
  199.   
  200.  [[[  1.22103825e+01   5.72040796e+00  -3.56989503e+00  -1.02248180e+00  
  201.      -5.20942688e-01   7.15008640e+00   3.43482435e-01]  
  202.    [  6.01409674e+00  -1.59511256e+00  -6.48080063e+00  -1.82889538e+01  
  203.      -1.03537569e+01  -1.48270035e+01  -5.26662111e+00]  
  204.    [  5.51758146e+00  -2.91831636e+00   3.75461340e-01  -9.23893452e-02  
  205.      -9.22101116e+00   7.16952372e+00  -6.86479330e-01]]  
  206.   
  207.   [[ -3.03645611e+00   6.68620300e+00  -3.31973934e+00  -4.91346550e+00  
  208.       9.20719814e+00  -2.55552864e+00  -2.16087699e-02]  
  209.    [ -3.02986956e+00  -1.29726543e+01   1.53023469e+00  -8.19733238e+00  
  210.       5.68085670e+00  -1.72856820e+00  -4.69369221e+00]  
  211.    [ -6.67176056e+00   8.76355553e+00   2.18996063e-01  -4.38777208e+00  
  212.      -6.35764122e-01  -1.37812555e+00  -4.41474581e+00]]  
  213.   
  214.   [[  2.25345469e+00   1.02142305e+01  -1.71714854e+00  -5.29060185e-01  
  215.       2.27982092e+00  -8.75302982e+00   7.13998675e-02]  
  216.    [ -6.67547846e+00   3.67722750e+00  -3.44172812e+00   5.69674826e+00  
  217.      -2.28723526e+00   5.92991543e+00   5.53608060e-01]  
  218.    [ -1.01174891e-01  -2.73731589e+00  -4.06187654e-01   6.54158068e+00  
  219.       2.59603882e+00   2.99202776e+00  -2.22350287e+00]]]  
  220.   
  221.   
  222.  [[[ -1.81271315e+00   2.47674489e+00  -2.90284491e+00   1.34291325e+01  
  223.       7.69864845e+00  -1.27134466e+00   3.02233839e+00]  
  224.    [ -2.08135307e-01   1.03206539e+00   1.90775347e+00   9.01517391e+00  
  225.      -3.52140331e+00   9.05393791e+00  -9.12732124e-01]  
  226.    [  1.12128162e+00   5.98179293e+00  -2.27206993e+00  -5.21281779e-01  
  227.       6.20835352e+00   3.73474598e+00   1.18961644e+00]]  
  228.   
  229.   [[  3.17242837e+00  -6.00571585e+00   2.37661076e+00  -5.64483738e+00  
  230.      -6.45412731e+00   8.75251675e+00   7.33790398e-02]  
  231.    [  3.08957529e+00  -1.06855690e-01  -5.16810894e-01  -9.41085911e+00  
  232.       8.23878098e+00   6.79738426e+00  -1.23478663e+00]  
  233.    [ -9.20640087e+00  -6.82801771e+00  -5.96975613e+00   7.61030674e-01  
  234.      -4.35995817e+00  -3.54818010e+00  -2.56281614e+00]]  
  235.   
  236.   [[  4.69872713e-01   8.36402321e+00   5.37103415e-01  -1.68033957e-01  
  237.      -3.21731424e+00  -7.34270859e+00  -3.14253521e+00]  
  238.    [  6.69656086e+00  -5.27954197e+00  -8.57314682e+00   4.84328842e+00  
  239.      -2.96387672e+00   2.47114658e+00   2.85376692e+00]  
  240.    [ -7.86032295e+00  -7.18845367e+00  -3.27161223e-01   9.27330971e+00  
  241.      -6.14093494e+00  -4.49041557e+00   3.47160912e+00]]]  
  242.   
  243.   
  244.  [[[ -1.89188433e+00   5.43082857e+00   6.04252160e-01   6.92894220e+00  
  245.       8.59178162e+00   1.02003086e+00   5.31300211e+00]  
  246.    [ -8.97491455e-01   6.52438164e+00  -4.43710327e+00   7.10509634e+00  
  247.       8.84234428e+00   3.08552694e+00   2.78152227e+00]  
  248.    [ -9.40537453e-02   2.34666920e+00  -5.57496691e+00  -8.62346458e+00  
  249.      -1.32807600e+00  -8.12027454e-02  -9.00946975e-01]]  
  250.   
  251.   [[ -3.53673506e+00   8.93675327e+00   3.27456236e-01  -3.41519475e+00  
  252.       7.69804525e+00  -5.18698692e+00  -3.96991730e+00]  
  253.    [  1.99988627e+00  -9.16149998e+00  -7.49944544e+00   5.02162695e-01  
  254.       3.57059622e+00   9.17566013e+00  -1.77589107e+00]  
  255.    [ -1.18147678e+01  -7.68992901e+00   1.88449645e+00   2.77643538e+00  
  256.      -1.11342735e+01  -3.12916255e+00  -3.34161663e+00]]  
  257.   
  258.   [[ -3.62668943e+00  -3.10993242e+00   3.60834384e+00   4.69678783e+00  
  259.      -1.73794723e+00  -1.27035933e+01   3.65882218e-01]  
  260.    [ -8.97550106e+00  -4.33533072e-01   4.41743970e-01  -5.83433771e+00  
  261.      -4.85818958e+00   9.56629372e+00   3.56375504e+00]  
  262.    [ -6.87092066e+00   1.96412420e+00   5.14182663e+00  -8.97769547e+00  
  263.       3.61136627e+00   5.91387987e-01  -2.95224571e+00]]]  
  264.   
  265.   
  266.  [[[ -1.11802626e+00   3.24175072e+00   5.94067669e+00   9.29727936e+00  
  267.       9.28199863e+00  -4.80889034e+00   6.96202660e+00]  
  268.    [  7.23959684e+00   3.11182523e+00   1.84116721e+00   5.12095928e-01  
  269.      -7.65049171e+00  -4.05325556e+00   5.38544941e+00]  
  270.    [  4.66621685e+00  -1.61665392e+00   9.76448345e+00   2.38519001e+00  
  271.      -2.06760812e+00  -6.03633642e-01   3.66192675e+00]]  
  272.   
  273.   [[  1.52149725e+00  -1.84441996e+00   4.87877655e+00   2.96750760e+00  
  274.       2.37311172e+00  -2.98487616e+00   9.98114228e-01]  
  275.    [  9.20035839e+00   5.24396753e+00  -2.57312679e+00  -7.26040459e+00  
  276.      -1.17509928e+01   6.85688591e+00   3.37383580e+00]  
  277.    [  6.17629957e+00  -5.15294194e-01  -1.64212489e+00  -5.70274448e+00  
  278.      -2.36294913e+00   2.60432816e+00   2.63957453e+00]]  
  279.   
  280.   [[  7.91168213e-03  -1.15018034e+00   3.05471039e+00   3.31086922e+00  
  281.       5.35744762e+00   1.14832592e+00   9.56500292e-01]  
  282.    [  4.86464739e+00   5.37348413e+00   1.42920148e+00   1.62809372e+00  
  283.       2.61656570e+00   7.88479471e+00  -6.09324336e-01]  
  284.    [  7.71319962e+00  -1.73930550e+00  -2.99925613e+00  -3.14857435e+00  
  285.       3.19194889e+00   1.70928288e+00   4.90955710e-01]]]  
  286.   
  287.   
  288.  [[[ -1.79046512e+00   8.54369068e+00   1.85044312e+00  -9.88471413e+00  
  289.       9.52995300e-01  -1.34820042e+01  -1.13713551e+01]  
  290.    [  8.37582207e+00   6.64692163e+00  -3.22429276e+00   3.37997460e+00  
  291.       3.91468263e+00   6.96061993e+00  -1.18029404e+00]  
  292.    [ -2.13278866e+00   4.36152029e+00  -4.14593410e+00  -2.15160155e+00  
  293.       1.90767622e+00   1.16321917e+01  -3.72644544e+00]]  
  294.   
  295.   [[ -5.03508925e-01  -6.33426476e+00  -1.06393566e+01  -6.49301624e+00  
  296.      -6.31036520e+00   3.13485146e+00  -5.77433109e-01]  
  297.    [  7.41444230e-01  -4.87326956e+00  -5.98253345e+00  -9.14121056e+00  
  298.      -8.64077091e-01   2.06696177e+00  -7.59688473e+00]  
  299.    [  1.38767815e+00   1.84418947e-01   5.72539902e+00  -2.07557893e+00  
  300.       9.70911503e-01   1.16765432e+01  -1.40111232e+00]]  
  301.   
  302.   [[ -1.21869087e+00   2.44499159e+00  -1.65706706e+00  -6.19807529e+00  
  303.      -5.56950712e+00  -1.72372568e+00   3.62687564e+00]  
  304.    [  2.23708963e+00  -2.87862611e+00   2.71666467e-01   4.35115099e+00  
  305.      -8.85548592e-01   2.91860628e+00   8.10848951e-01]  
  306.    [ -5.33635712e+00   7.15072036e-01   5.21240902e+00  -3.11152220e+00  
  307.       2.01623154e+00  -2.28398323e-01  -3.23233747e+00]]]  
  308.   
  309.   
  310.  [[[  3.77991509e+00   5.53513861e+00  -1.82022047e+00   4.22430277e+00  
  311.       5.60331726e+00  -4.28308249e+00   4.54524136e+00]  
  312.    [ -5.30983162e+00  -3.45605731e+00   2.69374561e+00  -6.16836596e+00  
  313.      -9.18601036e+00  -1.58697796e+00  -5.73809910e+00]  
  314.    [  2.18868661e+00   6.96338892e-01   1.88057957e+01  -4.21353197e+00  
  315.       1.20818818e+00   2.85108542e+00   6.62180042e+00]]  
  316.   
  317.   [[  1.01285219e+01  -4.86819077e+00  -2.45067930e+00   7.50106812e-01  
  318.       4.37201977e+00   4.78472042e+00   1.19103444e+00]  
  319.    [ -3.26395583e+00  -5.59358537e-01   1.52001972e+01  -5.93994498e-01  
  320.      -1.49040818e+00  -7.02547312e+00  -1.29268813e+00]  
  321.    [  1.02763653e+01   1.31108007e+01  -2.91605043e+00  -1.37688947e+00  
  322.       3.33029580e+00   1.96966705e+01   2.55259371e+00]]  
  323.   
  324.   [[  4.58397627e+00  -3.19160700e+00  -6.51985502e+00   1.02908373e+01  
  325.      -4.17618275e+00  -9.69347239e-01   7.46259832e+00]  
  326.    [  6.09876537e+00   1.33044279e+00   5.04027081e+00  -6.87740147e-01  
  327.       4.14770365e+00  -2.26751328e-01   1.54876924e+00]  
  328.    [  2.70127630e+00  -1.59834003e+00  -1.82587504e+00  -5.92888784e+00  
  329.      -5.65038967e+00  -6.46078014e+00  -1.80765367e+00]]]  
  330.   
  331.   
  332.  [[[ -1.57899165e+00   3.39969063e+00   1.02308102e+01  -7.77082300e+00  
  333.      -8.02129686e-01  -3.67387819e+00  -1.37204361e+00]  
  334.    [  3.93093729e+00   6.17498016e+00  -1.41695750e+00  -1.26903206e-01  
  335.       2.18985319e+00   5.83657503e-01   7.39725351e-01]  
  336.    [  5.53898287e+00   2.22283316e+00  -1.10478985e+00   2.68644023e+00  
  337.      -2.59913635e+00   3.74231935e+00   4.85016155e+00]]  
  338.   
  339.   [[  4.05368614e+00  -3.74058294e+00   7.32348633e+00  -1.17656231e+00  
  340.       3.71810269e+00  -1.63957381e+00   9.91670132e-01]  
  341.    [ -1.29317007e+01   1.12296543e+01  -1.13844347e+01  -7.13933802e+00  
  342.      -8.65884399e+00  -5.56065178e+00  -1.46718264e+00]  
  343.    [ -8.08718109e+00  -1.98826480e+00  -4.07488203e+00   2.06440473e+00  
  344.       1.13524094e+01   5.68703651e+00  -2.18706942e+00]]  
  345.   
  346.   [[  1.51166654e+00  -6.84034204e+00   9.33474350e+00  -4.80931902e+00  
  347.      -6.24172688e-02  -4.21381521e+00  -5.73313046e+00]  
  348.    [ -1.35943902e+00   5.27799511e+00  -3.77813816e+00   6.88291168e+00  
  349.       4.35068893e+00  -1.02540245e+01   8.86861205e-01]  
  350.    [ -4.49999619e+00  -2.97630525e+00  -6.18604183e-01  -2.49702692e+00  
  351.      -6.76169348e+00  -2.55930996e+00  -2.71291423e+00]]]]  




你可能感兴趣的:(tensorflow)