Python LDA gensim 计算 perplexity

转载自 https://blog.csdn.net/qq_23926575/article/details/79472742

1.LDA主题模型困惑度 
这部分参照:LDA主题模型评估方法–Perplexity,不过后面发现这篇文章Perplexity(困惑度)感觉写的更好一点,两篇都是翻译的维基百科。 
perplexity是一种信息理论的测量方法,b的perplexity值定义为基于b的熵的能量(b可以是一个概率分布,或者概率模型),通常用于概率模型的比较 
wiki上列举了三种perplexity的计算: 
1.1 概率分布的perplexity 
公式: perplexity公式1 
其中H(p)就是该概率分布的熵。当概率P的K平均分布的时候,带入上式可以得到P的perplexity值=K。 
1.2 概率模型的perplexity 
公式:perplexity公式2 
公式中的Xi为测试局,可以是句子或者文本,N是测试集的大小(用来归一化),对于未知分布q,perplexity的值越小,说明模型越好。 
指数部分也可以用交叉熵来计算,略过不表。 
1.3单词的perplexity 
perplexity经常用于语言模型的评估,物理意义是单词的编码大小。例如,如果在某个测试语句上,语言模型的perplexity值为2^190,说明该句子的编码需要190bits 
2.困惑度perplexity公式 

perplexity=elog(p(w))Nperplexity=e−∑log(p(w))N

其中, p(w) 是指的测试集中出现的每一个词的概率,具体到LDA的模型中就是 p(w)=zp(z|d)p(w|z)p(w)=∑zp(z|d)∗p(w|z)  ( z,d分别指训练过的主题和测试集的各篇文档 )。分母的N是测试集中出现的所有词,或者说是测试集的总长度,不排重。 
3.计算困惑度的代码

下述代码中加载的.dictionary(字典)、.mm(语料)、.model(模型)文件均为在python下进行lda主题挖掘(二)——利用gensim训练LDA模型中得到的结果,如果文件格式与我不同,说明调用的不是同一个包,代码无法直接使用,可参考代码逻辑,若是已按照python下进行lda主题挖掘(二)——利用gensim训练LDA模型中的方法得到上述文件,可直接调用下述代码计算困惑度。 
PS:将语料经过TFIDF训练模型后计算得到的困惑度要远大于直接进行训练的困惑度(在我这边是这样),应该是正常情况,不必惊慌。

#-*-coding:utf-8-*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import os
from gensim.corpora import Dictionary
from gensim import corpora, models
from datetime import datetime
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s : ', level=logging.INFO)

def perplexity(ldamodel, testset, dictionary, size_dictionary, num_topics):
    """calculate the perplexity of a lda-model"""
    # dictionary : {7822:'deferment', 1841:'circuitry',19202:'fabianism'...]
    print ('the info of this ldamodel: \n')
    print ('num of testset: %s; size_dictionary: %s; num of topics: %s'%(len(testset), size_dictionary, num_topics))
    prep = 0.0
    prob_doc_sum = 0.0
    topic_word_list = [] # store the probablity of topic-word:[(u'business', 0.010020942661849608),(u'family', 0.0088027946271537413)...]
    for topic_id in range(num_topics):
        topic_word = ldamodel.show_topic(topic_id, size_dictionary)
        dic = {}
        for word, probability in topic_word:
            dic[word] = probability
        topic_word_list.append(dic)
    doc_topics_ist = [] #store the doc-topic tuples:[(0, 0.0006211180124223594),(1, 0.0006211180124223594),...]
    for doc in testset:
        doc_topics_ist.append(ldamodel.get_document_topics(doc, minimum_probability=0))
    testset_word_num = 0
    for i in range(len(testset)):
        prob_doc = 0.0 # the probablity of the doc
        doc = testset[i]
        doc_word_num = 0 # the num of words in the doc
        for word_id, num in doc:
            prob_word = 0.0 # the probablity of the word 
            doc_word_num += num
            word = dictionary[word_id]
            for topic_id in range(num_topics):
                # cal p(w) : p(w) = sumz(p(z)*p(w|z))
                prob_topic = doc_topics_ist[i][topic_id][1]
                prob_topic_word = topic_word_list[topic_id][word]
                prob_word += prob_topic*prob_topic_word
            prob_doc += math.log(prob_word) # p(d) = sum(log(p(w)))
        prob_doc_sum += prob_doc
        testset_word_num += doc_word_num
    prep = math.exp(-prob_doc_sum/testset_word_num) # perplexity = exp(-sum(p(d)/sum(Nd))
    print ("the perplexity of this ldamodel is : %s"%prep)
    return prep

if __name__ == '__main__':
    middatafolder = r'E:\work\lda' + os.sep
    dictionary_path = middatafolder + 'dictionary.dictionary'
    corpus_path = middatafolder + 'corpus.mm'
    ldamodel_path = middatafolder + 'lda.model'
    dictionary = corpora.Dictionary.load(dictionary_path)
    corpus = corpora.MmCorpus(corpus_path)
    lda_multi = models.ldamodel.LdaModel.load(ldamodel_path)
    num_topics = 50
    testset = []
    # sample 1/300
    for i in range(corpus.num_docs/300):
        testset.append(corpus[i*300])
    prep = perplexity(lda_multi, testset, dictionary, len(dictionary.keys()), num_topics)

你可能感兴趣的:(nlp)