import gym
import multiprocessing
import threading
import numpy as np
import os
import shutil
import matplotlib.pyplot as plt
import tensorflow as tf
# number of worker agents
no_of_workers = multiprocessing.cpu_count()
# maximum number of steps per episode
no_of_ep_steps = 2000
# total number of episodes
no_of_episodes = 2000
global_net_scope = 'Global_Net'
# sets how often the global network should be updated
update_global = 50
# discount factor
gamma = 0.9
# entropy factor
entropy_beta = 0.01
# learning rate for actor
lr_a = 0.0001
# learning rate for critic
lr_c = 0.0001
# boolean for rendering the environment
render=True
# directory for storing logs
log_dir = 'logs'
env = gym.make('MountainCarContinuous-v0')
env.reset()
# we get the number of states, actions and also the action bound
no_of_states = env.observation_space.shape[0]
no_of_actions = env.action_space.shape[0]
action_bound = [env.action_space.low, env.action_space.high]
print('num_states:',no_of_states)
print('num_actions:',no_of_actions)
print('action_bound:',action_bound)
class ActorCritic(object):
def __init__(self, scope, sess, globalAC=None):
# first we initialize the session and RMS prop optimizer for both
# our actor and critic networks
self.sess = sess
self.actor_optimizer = tf.train.RMSPropOptimizer(lr_a, name='RMSPropA')
self.critic_optimizer = tf.train.RMSPropOptimizer(lr_c, name='RMSPropC')
# now, if our network is global then,
if scope == global_net_scope:
with tf.variable_scope(scope):
# initialize states and build actor and critic network
self.s = tf.placeholder(tf.float32, [None, no_of_states], 'S')
# get the parameters of actor and critic networks
self.a_params, self.c_params = self._build_net(scope)[-2:]
# if our network is local then,
else:
with tf.variable_scope(scope):
# initialize state, action and also target value as v_target
self.s = tf.placeholder(tf.float32, [None, no_of_states], 'S')
self.a_his = tf.placeholder(tf.float32, [None, no_of_actions], 'A') # a_history
self.v_target = tf.placeholder(tf.float32, [None, 1], 'Vtarget')
# since we are in continuous actions space, we will calculate
# mean and variance for choosing action
mean, var, self.v, self.a_params, self.c_params = self._build_net(scope)
# then we calculate td error as the difference between v_target - v
td = tf.subtract(self.v_target, self.v, name='TD_error')
# minimize the TD error
with tf.name_scope('critic_loss'):
self.critic_loss = tf.reduce_mean(tf.square(td))
# update the mean and var value by multiplying mean with the action bound and adding var with 1e-4
# 因为 tanh 输出的 mean 是在 [-1,1] 区间,需要转化到 action_bound 内,同时避免 var 等于零
with tf.name_scope('wrap_action'):
mean, var = mean * action_bound[1], var + 1e-4
# we can generate distribution using this updated mean and var
normal_dist = tf.contrib.distributions.Normal(mean, var)
# now we shall calculate the actor loss. Recall the loss function.
with tf.name_scope('actor_loss'):
# calculate first term of loss which is log(pi(s))
log_prob = normal_dist.log_prob(self.a_his)
exp_v = log_prob * tf.stop_gradient(td) # td 的优化交给 critic_loss
# calculate entropy from our action distribution for ensuring exploration
# When the entropy value is high, every action's probability will be
# the same, so the agent will be unsure as to which action to perform, and when
# the entropy value is lowered, one action will have a higher probability than the
# others and the agent can pick up the action that has this high probability
entropy = normal_dist.entropy()
# we can define our final loss as,
self.exp_v = exp_v + entropy_beta * entropy
# then, we try to minimize the loss
self.actor_loss = tf.reduce_mean(-self.exp_v)
# now, we choose action by drawing from the distribution and clipping it between action bounds,
with tf.name_scope('choose_action'):
self.A = tf.clip_by_value(tf.squeeze(normal_dist.sample(1), axis=0), action_bound[0],
action_bound[1])
# calculate gradients for both of our actor and critic networks,
with tf.name_scope('local_grad'):
self.a_grads = tf.gradients(self.actor_loss, self.a_params)
self.c_grads = tf.gradients(self.critic_loss, self.c_params)
# now, we update our global network weights,
with tf.name_scope('sync'):
# pull the global network weights to the local networks
with tf.name_scope('pull'):
# 把每一个 g_p 赋值给 l_p
self.pull_a_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.a_params, globalAC.a_params)]
self.pull_c_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.c_params, globalAC.c_params)]
# push the local gradients to the global network
with tf.name_scope('push'):
self.update_a_op = self.actor_optimizer.apply_gradients(zip(self.a_grads, globalAC.a_params))
self.update_c_op = self.critic_optimizer.apply_gradients(zip(self.c_grads, globalAC.c_params))
# next, we define a function called _build_net for building our actor and critic network
def _build_net(self, scope):
# initialize weights
w_init = tf.random_normal_initializer(0., .1)
with tf.variable_scope('actor'):
# 三层全连接:输入==> 隐藏层 l_a ==> 两个独立的输出层(mean,var)
l_a = tf.layers.dense(self.s, 200, tf.nn.relu6, kernel_initializer=w_init, name='la')
# tanh 的输出在 [-1,1] 区间内
mean = tf.layers.dense(l_a, no_of_actions, tf.nn.tanh, kernel_initializer=w_init, name='mean')
# softplus 是平滑的 relu,表示输出大于零
var = tf.layers.dense(l_a, no_of_actions, tf.nn.softplus, kernel_initializer=w_init, name='var')
with tf.variable_scope('critic'):
l_c = tf.layers.dense(self.s, 10, tf.nn.relu6, kernel_initializer=w_init, name='lc')
v = tf.layers.dense(l_c, 1, kernel_initializer=w_init, name='v')
a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/actor')
c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic')
return mean, var, v, a_params, c_params
# update the local gradients to the global network
def update_global(self, feed_dict):
self.sess.run([self.update_a_op, self.update_c_op], feed_dict)
# get the global parameters to the local networks
def pull_global(self):
self.sess.run([self.pull_a_params_op, self.pull_c_params_op])
# select action
def choose_action(self, s):
s = s[np.newaxis, :]
return self.sess.run(self.A, {self.s: s})[0]
class Worker(object):
def __init__(self, name, globalAC, sess):
# intialize environment for each worker
self.env = gym.make('MountainCarContinuous-v0').unwrapped
self.name = name
# create ActorCritic agent for each worker
self.AC = ActorCritic(name, sess, globalAC)
self.sess = sess
def work(self):
global global_rewards, global_episodes
total_step = 1
# store state, action, reward
buffer_s, buffer_a, buffer_r = [], [], []
# loop if the coordinator is active and global episode is less than the maximum episode
# 在函数中没有修改 coord,故可以不加 global 修饰符
while not coord.should_stop() and global_episodes < no_of_episodes:
# initialize the environment by resetting
s = self.env.reset()
# store the episodic reward
ep_r = 0
for ep_t in range(no_of_ep_steps):
# Render the environment for only worker 1
if self.name == 'W_0' and render:
self.env.render()
# choose the action based on the policy
a = self.AC.choose_action(s)
# perform the action (a), recieve reward (r) and move to the next state (s_)
s_, r, done1, info = self.env.step(a)
# set done as true if we reached maximum step per episode
# python 语言中的三元运算,statement1 if condition else statement2
done2 = True if ep_t == no_of_ep_steps - 1 else False
done = done1 or done2
ep_r += r
# if self.name == 'W_0':
# print('done:{} r:{}'.format(done,r))
# store the state, action and rewards in the buffer
buffer_s.append(s)
buffer_a.append(a)
# normalize the reward
buffer_r.append((r-50)/50)
# we Update the global network after particular time step
if total_step % update_global == 0 or done:
if done1:
v_s_ = 0 # done 结束状态没有 reward,不需要考虑,注意 done 和 done1 的区别
else:
v_s_ = self.sess.run(self.AC.v, {self.AC.s: s_[np.newaxis, :]})[0, 0]
# np.newaxis 的用法,它实际等价于 None
# >>> x
# array([0, 1, 2])
#
# >>> x.shape
# (3,)
#
# >>> x[:, np.newaxis]
# array([[0],
# [1],
# [2]])
# buffer for target v
buffer_v_target = []
for r in buffer_r[::-1]:
v_s_ = r + gamma * v_s_
buffer_v_target.append(v_s_)
buffer_v_target.reverse()
# np.vstack 把行向量转化成列向量
buffer_s, buffer_a, buffer_v_target = np.vstack(buffer_s), np.vstack(buffer_a), np.vstack(
buffer_v_target)
feed_dict = {
self.AC.s: buffer_s,
self.AC.a_his: buffer_a,
self.AC.v_target: buffer_v_target,
}
# update global network
self.AC.update_global(feed_dict)
buffer_s, buffer_a, buffer_r = [], [], []
# get global parameters to local ActorCritic
self.AC.pull_global()
s = s_
total_step += 1
if done:
if len(global_rewards) < 5:
global_rewards.append(ep_r)
else:
global_rewards.append(ep_r)
global_rewards[-1] = (np.mean(global_rewards[-5:]))
global_episodes += 1
break
if self.name == 'W_0':
print('global_episode: {} reward:{}' .format(global_episodes,ep_r))
# create a list for string global rewards and episodes
global_rewards = []
global_episodes = 0
# start tensorflow session
sess = tf.Session()
with tf.device("/cpu:0"):
# create an instance to our ActorCritic Class
global_ac = ActorCritic(global_net_scope, sess)
workers = []
# loop for each workers
for i in range(no_of_workers):
i_name = 'W_%i' % i
workers.append(Worker(i_name, global_ac, sess))
coord = tf.train.Coordinator()
sess.run(tf.global_variables_initializer())
# log everything so that we can visualize the graph in tensorboard
if os.path.exists(log_dir):
shutil.rmtree(log_dir)
tf.summary.FileWriter(log_dir, sess.graph)
worker_threads = []
# start workers
for worker in workers:
job = lambda: worker.work()
t = threading.Thread(target=job)
t.start()
worker_threads.append(t)
coord.join(worker_threads)