- 2.1概率统计的世界
极客探索者
量化交易概率论
欢迎来到概率统计的世界!在量化交易中,概率统计是至关重要的工具。通过理解概率,我们可以用数学的方法来描述市场行为,预测未来走势,并制定交易策略。让我们一起从基础概念开始,逐步深入,揭开概率统计的神秘面纱。1.1概率论的基本概念与应用概率是用来描述某个事件发生可能性的数值。例如,丢一枚硬币,正面朝上的概率是50%。这个概率可以用数学公式表示为:在量化交易中,我们常常需要计算各种事件的概率,例如股票价
- 深度学习应该如何入门?
wypdao
人工智能深度学习人工智能
深度学习是一门令人着迷的领域,但初学者可能会感到有些困惑。让我们从头开始,用通俗易懂的语言来探讨深度学习的基础知识。1.基础知识深度学习需要一些数学和编程基础。首先,我们要掌握一些数学知识,如线性代数、微积分和概率统计。这些知识在深度学习算法中非常常见。另外,选择一门编程语言作为工具,如Python,掌握其基本语法和常用库的使用。2.学习机器学习吴恩达的机器学习课程是一个很好的入门教程。虽然有些地
- 如何学习和规划类似ChatGPT这种人工智能(AI)相关技术
ABEL in China
学习chatgpt人工智能
学习和规划类似ChatGPT这种人工智能(AI)相关技术的路径通常包括以下步骤:学习基础知识:学习编程:首先,你需要学习一种编程语言,例如Python,这是大多数人工智能项目的首选语言。数学基础:深度学习和自然语言处理等领域需要一定的数学基础,包括线性代数、微积分和概率统计。掌握机器学习和深度学习:了解机器学习和深度学习的基本概念,例如神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。学习
- 均方根(rms),标准差(std),平均绝对误差(mae),方差(var/std*std)计算与数学意义
拾穗哥
matlab算法经验分享
在计算时总是遇到需要计算平均值,但是对于均方根和标准差选择还是不明确。标题里面的括号为matlab函数可以直接运行。1、均方根(rms)均方根误差用于衡量观测值同真值之间的偏差。2、标准差(std)标准差是方差的算术平方根。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。3、平均绝对误差(mae)平均绝对误差是所有单个观测值与算术平均值的偏
- 发家致富的秘密(83)
c0e1a742c261
1)、父母做什么,我们便跟着做什么。能超越父母的子女并不多。父母读大学,孩子便能读大学。父母是大学教授,孩子再差也是大学老师。生活是概率统计,漏网之鱼不过是传奇,是奇迹。我们35岁做什么,我们的孩子到了35岁便做什么。锁定一个卖点循环。锁定了,便不要变。不要以为人生很长。从大学出来,我们不是22便是23。25岁成家了,所有的想法都没了。挣扎到35岁,便是人生的顶点。现在,我们在做什么?我们的卖点,
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- 这才是心理学
JeetChan
这才是心理学 如果让我荐书,一定是这本,《这才是心理学》。曾极力向身边的人推荐学习概率统计方面的知识,尽管人们都“嗤之以鼻”,而我认为世界是被概率统治的,最终被揭示的行为规律通常都是一种概率关系。这本书向我们阐述了心理学的批判性思维(原作名:HowtoThinkStraightaboutPsychology)和概率性思维。书中有大量反常识的观点,颠覆你的认知。同时,这也是一本难书,书中包含了大量
- LogLogCounting 基数估计算法
芒果菠萝蛋炒饭
介绍基数估计算法(CardinalityEstimationAlgorithm)是基于概率统计理论的估算给定数据集中不重复元素基数的算法。它是一种基于概率统计理论所设计的概率算法,克服了精确基数计数算法的诸多弊端(如内存需求过大或难以合并等),同时可以通过一定手段将误差控制在所要求的范围内。什么是基数?基数指的是一个集合(这里的集合可以包含重复元素,不是集合论中定义的集合)中不同元素的个数,例如集
- 基于第一性原理投资
曹博士
图片发自App张教授打造丹华资本,致力于用第一性原理来指导风险投资。所谓第一性原理,就是基于最基本的自然法则,而且通常是可以用数学来表达并且在物理上首先验证。比如熵法则,量子原理,概率统计框架,等。不过从实际效果来看,2013起步的丹华资本,业绩很差。基本上成了反面案例。这个类似由诺贝尔经济学获奖者组建的量化投资公司长期资本,本来希望用量化的方式做套利投资,结果一个俄罗斯的黑天鹅事件,就让其折戟沉
- 概率统计学习打卡——数理统计与描述性分析
xtsqmx
1.数理统计的基本概念总体:研究对象的全体(X)个体:组成总体的每个基本单元样本:从总体中抽取的一部分个体()简单随机样本:具有随机性和独立性的样本,即样本相互独立具有同一分布样本的两重性:抽样前是随机变量,抽样后是具体的数统计量:样本的函数,不含有任何未知参数抽样分布:统计量的分布2.常用的统计量样本均值:用来估计总体均值和对对有关总体均值的假设做检验样本方差:用来估计总体方差和对有关总体方差的
- DataWhale概率统计4——方差分析
摩卡Daddy
6.方差分析6.1概要方差分析(Analysisofvariance,ANOVA)主要研究分类变量作为自变量时,对因变量的影响是否显著,用于两个及两个以上样本均属差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分为两类,一是不可控的随机因素,另一是研究中施加对结果形成影响的可控因素6.2原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发
- 《自动驾驶汽车的缺陷及其产品责任》(四)
刘东利2020
接下来是自动驾驶的主体资格讨论,从技术及法律上。首先看技术的理解:从自动驾驶人工智能所赖以实现的技术来看,所谓具有深度自主学习能力的人工智能其本质上是依靠大数据、概率统计以及日益增长的运算能力实现对驾驶行为及其规律的重复性归纳,但并不能完全揭示其本质或内在规律,尤其是其缺乏人类的创造性思维,无法在既有信息和数据的基础上创造性地解决未知问题、无法创造新知识。所以,第一方面的题眼是“重复性归纳”,不具
- 人工智能之大数定理和中心极限定理
WEL测试
人工智能WEL测试人工智能概率论大数定理中心极限定理
大数定律大数定律:是一种描述当试验次数很大时所呈现的概率性致的定律,由概率统计定义“频率收敛于概率”引申而来。换而言之,就是n个独立分布的随机变量其观察值的均值依概率收敛于这些随机变量所属分布的理论均值,也就是总体均值。例如:假设每次从1、2、3当中随机选取一个数字,随着抽样次数的增加,样本均值越来越趋近于总体期望((1+2+3)/3=2)。依概率收敛:设{XnX_nXn}为一随机变量序列,X为一
- DAY 25 《你能准确的预测股价嘛》
Ciel天
你不能准确的预估5分钟内股票价格的涨幅,就像你不能够预估,抛硬币时会是哪一面朝上一样,因为这两件事情都和赌博买彩票一样,是“独立事件”。换句话说,预测的准确率永远无法超过50%,这在概率统计学上没有意义。当一件事情发生的概率在50%以上,哪怕是51%,我们就要努力,甚至要赌,因为哪怕是这一次输了,从长期看,你一定会赢。“绝大多数人没有从觉悟上理解统计概率基础知识有多么重要,于是,这一辈子就好像别人
- 机器学习 强化学习 深度学习的区别与联系
坠金
机器学习机器学习人工智能深度学习
机器学习强化学习深度学习机器学习按道理来说,这个领域(机器学习)应该叫做统计学习(StatisticalLearning),因为它的方法都是由概率统计领域拿来的。这些人中的领军人物很有商业头脑,把统计和物理的数理模型,改名叫做机器,比如**模型(model)就叫**机(machine),把一些层次模型(hierarchicalmodel)说成是“网”(net)。这样,搞出了几个“机”和“网”之后,
- 深度学习如何入门?
清水白石008
深度学习自然语言处理人工智能
深度学习如何入门?深度学习是一种利用多层神经网络来学习数据特征和模式的机器学习方法,它在图像识别、自然语言处理、语音识别、推荐系统等领域都取得了令人瞩目的成果。那么,如果你想学习深度学习,你需要掌握哪些知识和技能呢?本文将为你提供一个简明的指南,帮助你快速入门深度学习。一、基础知识深度学习涉及到许多数学概念,如线性代数、微积分和概率统计。如果你对这些概念不熟悉,可以通过在线课程、教科书和教程来学习
- 读过的书单
竭尽全力才能成功
读万卷书行万里路2017-今天读过的书单写出来给大家参考下工欲善其事,必先利其器我是一个php程序员鸟哥的linux私房菜基础篇服务器架构篇日本结城浩著程序员的数学1程序员的数学2概率统计程序员的数学3线性代数蒋心数据库系统概论清华大学出版社Mysql从入门到精通国家863软件孵化器headfirst设计模式大话设计模式人月神话HTTP权威指南人民邮电出版社redis入门指南李子烨人民邮电出版社锋
- 贝叶斯估计:Cramér-Rao下界和Fisher信息
DoYoungExplorer
导航算法及滤波算法概率论人工智能机器学习
在概率统计和信息理论领域,Cramér-Rao下界(Cramér-RaoBound)和Fisher信息(FisherInformation)是两个重要而密切相关的概念。它们在估计理论和信息量度量中发挥着关键作用。本文将深入探讨这两个概念的定义、关系以及它们在统计推断中的应用。Cramér-Rao下界的表达:Cramér-Rao下界(Cramér-Raobound)是统计估计理论中的一个重要概念,它
- 多元高斯分布:条件分布推导
DoYoungExplorer
导航算法及滤波机器学习人工智能算法
在概率统计学中,多元高斯分布是一种非常重要的分布,其条件分布的推导在实际问题中有广泛的应用。本文将详细探讨给定部分变量条件下,多元高斯分布中另一部分变量的条件分布的推导过程。1.多元高斯分布回顾首先,我们回顾一下多元高斯分布的基本形式:其中,Xa和Xb是随机向量的两个部分,μ是均值向量,Σ是协方差矩阵。均值向量:协方差矩阵:此外,使用协方差矩阵的逆矩阵也比较方便,即精度矩阵从而引入精度矩阵2.条件
- 机器学习周刊第五期:一个离谱的数据可视化Python库、可交互式动画学概率统计、机器学习最全文档、快速部署机器学习应用的开源项目、Redis 之父的最新文章
机器学习算法与Python实战
机器学习算法与Python实战机器学习信息可视化python
date:2024/01/08这个网站用可视化的方式讲解概率和统计基础知识,很多内容还是可交互的,非常生动形象。大家好,欢迎收看第五期机器学习周刊本期介绍7个内容,涉及Python、概率统计、机器学习、大模型等,目录如下:一个离谱的Python库看见概率,看见统计2024机器学习最强文档Gradio顶级程序员如何使用LLMTinyLlama微软宣布利用大型语言模型改进文本嵌入1、一个离谱的Pyth
- 线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
qiyi.sky
线性代数概率论学习笔记
目录概率的性质题一全概率公式题二题三概率的性质有限可加性:若有限个事件互不相容,则单调性:互补性:加法公式:可分性:题一在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报的有45%,订乙报的有35%,订丙报的有30%,同时订甲、乙两报的有10%,同时订甲、丙两报的有8%,同时订乙、丙两报的有5%,同时订三种报纸的有3%,求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只
- 理论U2 贝叶斯决策理论
轩不丢
机器学习机器学习
文章目录一、概率统计理论基础1、乘法公式2、全概率公式3、贝叶斯公式二、贝叶斯决策理论1、用处2、解决问题3、决策基础4、一些概念5、核心公式三、最小错误率贝叶斯决策1、目标2、例题分析3、问题1)决策的风险四、最小风险贝叶斯决策1、背景2、基本概念1)损失函数2)条件期望损失:3)期望风险:3、目标4、决策5、算法步骤6、例题分析五、两种贝叶斯的关系六、朴素贝叶斯决策1、问题2、概念3、例题分析
- 数据结构与算法之美学习笔记:46 | 概率统计:如何利用朴素贝叶斯算法过滤垃圾短信?
浊酒南街
数据结构与算法之美学习笔记算法数据结构
目录前言算法解析总结引申前言本节课程思维导图:上一节我们讲到,如何用位图、布隆过滤器,来过滤重复的数据。今天,我们再讲一个跟过滤相关的问题,如何过滤垃圾短信?垃圾短信和骚扰电话,我想每个人都收到过吧?买房、贷款、投资理财、开发票,各种垃圾短信和骚扰电话,不胜其扰。如果你是一名手机应用开发工程师,让你实现一个简单的垃圾短信过滤功能以及骚扰电话拦截功能,该用什么样的数据结构和算法实现呢?算法解析实际上
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- 笔记 | gamma分布
懒麻蛇
机器学习matlabpython人工智能统计学
gamma分布简介大写:Γ小写:γGamma函数在概率统计中频繁现身,众多的统计分布,包括常见的统计学三大分布(t分布,χ2分布,F分布)、Beta分布、Dirichlet分布的密度公式中都有Gamma函数的身影;当然发生最直接联系的概率分布是直接由Gamma函数变换得到的Gamma分布。α称为shapeparameter,主要决定了分布曲线的形状;β称为rateparameter,主要决定曲线有
- 11种概率分布,你了解几个?
小白学视觉
人工智能python编程语言机器学习深度学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达本文转自:视学算法了解常见的概率分布十分必要,它是概率统计的基石。这是昨天推送的从概率统计到深度学习,四大技术路线图谱,都在这里!文章中的第一大技术路线图谱如下所示,图中左侧正是本文要总结的所有常见概率分布。1均匀分布1)离散随机变量的均匀分布:假设X有k个取值:x1,x2,...,xk则均匀分布的概率密度函数为:2)连续随机变
- 《财富自由之路》39-40章
Yixing_seven
1、为什么没有人能准确预测市场价格的短期走向?问题的质量决定答案的质量先定义什么是“准确”,究竟要做到什么程度才算是准确关于二元问题,一般的答案只有“不一定”,或者“不知道”关于“预测”还缺个限定,时间维度不明,是短期预测?还是长期预测?关键结论短期价格预测几乎无法做到对于长期价格的预测,却比较容易,因为“基本面”就放在那里HOW:避免短期思考,一个月记录一次价格,并形成习惯学好并应用概率统计知识
- 揭秘大模型「幻觉」:数据偏差、泛化与上下文理解的挑战与解决之道
数据与后端架构提升之路
大模型深度学习机器学习人工智能
什么是大模型「幻觉」所谓的「幻觉」指的是当大模型生成与现实不符或逻辑上不连贯的信息时。这通常发生在模型对某些数据理解不足或数据本身存在偏差的情况下。由于模型是基于概率统计和以往数据训练的,它们可能在面对未知或少见情况时产生不准确的推断。大模型不具有本地知识所以存在幻觉造成大模型「幻觉」的原因这种现象的产生有多个原因:数据偏差:如果训练数据中存在偏差,模型可能会学习并复制这些偏差。过度泛化:模型可能
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 计算机图形学方向的基本能力
每天要吃一桶饭
CG图形学图形学
(1)数学基础:线性代数、概率统计学。在深度学习原理以及图形学的基础的原理,很加分。基本的算法研发能力。(2)综合性的技能:CV、DeepLearning、Interaction(人与自然交互、视觉交互)(3)学习多方面技能,实际应用落地。软硬结合、算法与应用结合。(4)工程化实现!用实际场景来验证算法的可行性,从哪些方面进行优化。(5)兴趣、热情,解决问题!学习的深度。(6)追求系统更加可用、好
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S