并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。 常常在使用中以森林来表示
1.「并查集」是一种建立在「数组」上的树形结构,并且这棵树是孩子结点指向父亲结点的;
2.「并查集」主要用于解决「连通性」问题,重点关注的是我和你是不是朋友,但是我们是几层朋友关系,并不重要;
3.「并查集」是树,所以优化的策略依然是和树的高度较劲,优化思路有「按秩合并」与「路径压缩」。
namespace UF1 {
class UF {
public:
// 构造函数
UnionFind(int n) {
count = n;
id = new int[n];
// 初始化, 每一个id[i]指向自己, 没有合并的元素
for (int i = 0; i < n; i++)
id[i] = i;
}
// 析构函数
~UnionFind() {
delete[] id;
}
// 查找过程, 查找元素p所对应的集合编号
int find(int p) {
assert(p >= 0 && p < count);
return id[p];
}
//查找p和q所属集合是否相同
bool isConnected(int p, int q) {
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
void unionElements(int p, int q) {
int pID = find(p);
int qID = find(q);
if (pID == qID)
return;
// 合并过程需要遍历一遍所有元素, 将两个元素的所属集合编号合并
for (int i = 0; i < count; i++)
if (id[i] == pID)
id[i] = qID;
}
private:
int* id;
int count;
}
};
namespace UF2{
class UnionFind{
private:
// 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树
// parent[i]表示第i个元素所指向的父节点
int* parent;
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
this->count = count;
// 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
for( int i = 0 ; i < count ; i ++ )
parent[i] = i;
}
// 析构函数
~UnionFind(){
delete[] parent;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
parent[pRoot] = qRoot;
}
};
}
namespace UF3{
class UnionFind{
private:
int* parent; // parent[i]表示第i个元素所指向的父节点
int* sz; // sz[i]表示以i为根的集合中元素个数
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
sz = new int[count];
this->count = count;
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
sz[i] = 1;
}
}
// 析构函数
~UnionFind(){
delete[] parent;
delete[] sz;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if( sz[pRoot] < sz[qRoot] ){
parent[pRoot] = qRoot;
sz[qRoot] += sz[pRoot];
}
else{
parent[qRoot] = pRoot;
sz[pRoot] += sz[qRoot];
}
}
};
}
我们引入 rank 数组,其定义是: rank[i] 表示以第 i 个元素为根的树的高度
namespace UF4{
class UnionFind{
private:
int* rank; // rank[i]表示以i为根的集合所表示的树的层数
int* parent; // parent[i]表示第i个元素所指向的父节点
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
rank = new int[count];
this->count = count;
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
// 析构函数
~UnionFind(){
delete[] parent;
delete[] rank;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// 不断去查询自己的父亲节点, 直到到达根节点
// 根节点的特点: parent[p] == p
while( p != parent[p] )
p = parent[p];
return p;
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if( rank[pRoot] < rank[qRoot] ){
parent[pRoot] = qRoot;
}
else if( rank[qRoot] < rank[pRoot]){
parent[qRoot] = pRoot;
}
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
};
}
这一版代码用得最多。因为好理解,且代码量较少。
只用理解这一句即可 parent[p] = parent[parent[p]];,可以称之为「隔代压缩」。
虽然压缩不彻底,但是多压缩几次也就能够达到完全压缩的效果,且不使用递归,占用「递归栈」空间
namespace UF5{
class UnionFind{
private:
// rank[i]表示以i为根的集合所表示的树的层数
// 在后续的代码中, 我们并不会维护rank的语意, 也就是rank的值在路径压缩的过程中, 有可能不在是树的层数值
// 这也是我们的rank不叫height或者depth的原因, 他只是作为比较的一个标准
int* rank;
int* parent; // parent[i]表示第i个元素所指向的父节点
int count; // 数据个数
public:
// 构造函数
UnionFind(int count){
parent = new int[count];
rank = new int[count];
this->count = count;
for( int i = 0 ; i < count ; i ++ ){
parent[i] = i;
rank[i] = 1;
}
}
// 析构函数
~UnionFind(){
delete[] parent;
delete[] rank;
}
// 查找过程, 查找元素p所对应的集合编号
// O(h)复杂度, h为树的高度
int find(int p){
assert( p >= 0 && p < count );
// path compression 1
while( p != parent[p] ){
parent[p] = parent[parent[p]];
p = parent[p];
}
return p;
// path compression 2, 递归算法
// if( p != parent[p] )
// parent[p] = find( parent[p] );
// return parent[p];
}
// 查看元素p和元素q是否所属一个集合
// O(h)复杂度, h为树的高度
bool isConnected( int p , int q ){
return find(p) == find(q);
}
// 合并元素p和元素q所属的集合
// O(h)复杂度, h为树的高度
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
// 根据两个元素所在树的元素个数不同判断合并方向
// 将元素个数少的集合合并到元素个数多的集合上
if( rank[pRoot] < rank[qRoot] ){
parent[pRoot] = qRoot;
}
else if( rank[qRoot] < rank[pRoot]){
parent[qRoot] = pRoot;
}
else{ // rank[pRoot] == rank[qRoot]
parent[pRoot] = qRoot;
rank[qRoot] += 1; // 此时, 我维护rank的值
}
}
};
}