度熊面前有一个全是由1构成的字符串,被称为全1序列。你可以合并任意相邻的两个1,从而形成一个新的序列。对于给定的一个全1序列,请计算根据以上方法,可以构成多少种不同的序列。
1≤N≤200
#include
#include
#include
#include
#include
#include
using namespace std;
#define LL long long
#define ULL unsigned long long
#define LD long double
#define Rep(x,y,i) for (int i=x;i//[x,y)
#define RepD(x,y,i) for (int i=x;i>y;i--) //(y,x]
#define Mem(X) memset(X,0,sizeof(X));
#define Pr(X) cout<<" "<<#X<<"="<
#define PrL(X) cout<<#X<<" = "<
#define PrLL cout<
using namespace std;
const double EPS = 1e-10;
#define IntMod 10000
struct BigInt
{
private:
vector<int> A;
bool Positive;
int VecNum;
public:
//Constructors
inline int GetLength(LL a) {int t=0; while (a>0) {a/=IntMod; t++;} return t;}
BigInt() { Positive = 1; VecNum = 0; }
BigInt(const BigInt &a) { A = a.A; VecNum = a.VecNum; Positive = a.Positive; }
BigInt(string s)
{
A.reserve(100);
if (s == "-0") { A.push_back(0); Positive = 1; VecNum = 1; return; }
int kk = 3; int kl = 0;
int l = s.length();
int j = l - 1;
if (s[0] == '-') { Positive = 0; kk++; kl++; }
else Positive = 1;
while (j>kk)
{
int t = 0;
Rep(0, 4, i) { t *= 10; t += s[j - (3 - i)] - '0'; }
j -= 4;
A.push_back(t);
}
int t = 0;
int k = j + 1;
Rep(kl, k, i) { t *= 10; t += s[i] - '0'; }
A.push_back(t);
VecNum = A.size();
}
BigInt(const LL &b)
{
LL a=b;
Positive=(a>=0);
VecNum=GetLength(abs(a));
A.resize(VecNum);
Rep(0,VecNum,i)
{
A[i]=a%IntMod;
a/=IntMod;
}
}
//BigInt& operator = (BigInt& a) { VecNum=a.VecNum; Positive=a.Positive; A=a.A; }
BigInt& operator = (const string s) { BigInt x(s); *this=x; }
BigInt& operator = (LL s) { BigInt x(s); *this = x; }
//Basic Math Functions
friend BigInt abs(BigInt a) { a.Positive=1; return a; }
friend bool isnegative(BigInt &a) { return a.Positive; }
BigInt& operator - () { Positive = !(Positive); return *this; }
// Ostream and Instream
friend ostream& operator << (ostream &out, BigInt &a)
{
if (a.VecNum==0)
{
out<<"0";
return out;
} //Bug Fixed if there is a BigInt constructed by the default constructor
if (!a.Positive) out << "-";
out << a.A[a.VecNum - 1];
RepD(a.VecNum - 2, -1, i)
{
if (a.A[i] == 0) { out << "0000"; continue; }
Rep(0, (int)(4 - log(a.A[i]) / log(10) - EPS), j) out << '0';
out << a.A[i];
}
return out;
}
friend istream& operator >> (istream &in, BigInt &a)
{
string s;
in >> s;
int L = s.length() - 1;int i = 0;bool flag = 0;
if (s[i] == '-') { i++; flag = 1; }
while (s[i] == '0' && i < L) i++;
string b(s.begin() + i, s.end());
if (flag) b.insert(0, "-");
a = BigInt(b);
return in;
}
//Bool Operators
bool operator < (const BigInt &b) const
{
if (Positive && b.Positive)
{
if (VecNum != b.VecNum) return (bool)(VecNum1 , -1, i)
if (A[i] != b.A[i])
return (bool)(A[i]//Bug Fixed that there should be a RepD rather that Rep
return 0;
}
if (!Positive && b.Positive) return 1;
if (Positive && !b.Positive) return 0;
BigInt a = b;
BigInt c = (*this);
if (!c.Positive && !a.Positive) return !((-c) < (-a));
return 1;
}
bool operator > (const BigInt &b) const { return !((*this)bool operator == (const BigInt &b) const { return (Positive == b.Positive && A == b.A && VecNum == b.VecNum); }
bool operator <= (const BigInt &b) const { return (*this == b) || (*this < b); }
bool operator >= (const BigInt &b) const { return (*this == b) || !(*this < b);}
bool operator != (const BigInt &b) const { return !(*this == b); }
bool operator < (const string b) const { BigInt x(b); return (*this) < x; }
bool operator == (const string b) const { BigInt x(b); return x==(*this) < x; }
bool operator < (const LL& b) const { BigInt x(b); return *this < x; }
bool operator == (const LL& b) const { BigInt x(b); return *this == x; }
//Function of Plus and Minus
BigInt operator - (const BigInt &b) const
{
BigInt x=*this;
BigInt y=b;
if (!x.Positive && y.Positive) return -(-x + y);
if ( x.Positive && !y.Positive) return x + y;
if (!x.Positive && !y.Positive) return (-y) - (-x);
if (xreturn -(y - x);
int L = max(x.VecNum, y.VecNum);
y.A.resize(L);
x.A.resize(L);
Rep(0, L, i)
{
x.A[i] -= y.A[i];
if (x.A[i]<0) { x.A[i] += IntMod; x.A[i + 1]--; }
}
while (x.A[L - 1] == 0 && ((L-1)!=0) ) { x.VecNum--; x.A.pop_back(); L--; }
return x;
}
BigInt operator + (const BigInt &b) const
{
BigInt x=*this;
BigInt y=b;
if (!x.Positive && y.Positive) return y - (-x);
if (!x.Positive && !y.Positive) return -(-x + (-y));
if ( x.Positive && !y.Positive) return x - (-y);
int L = max(x.VecNum, y.VecNum);
x.A.resize(L + 1);
y.A.resize(L + 1);
for (int i = 0; ifor (int i = 0; i1] += x.A[i] / IntMod; x.A[i] %= IntMod; }
x.VecNum = L;
if (x.A[L]) x.VecNum++;
else x.A.erase(x.A.begin() + L);
return x;
}
BigInt operator - (const LL &b) const { BigInt y(b); return *this - y; }
BigInt operator + (const LL &b) const { BigInt y(b); return *this + y; }
BigInt operator - (const string b) const { BigInt y(b); return *this - y; }
BigInt operator + (const string b) const { BigInt y(b); return *this + y; }
BigInt operator += (const BigInt& b) { *this=*this+b; return *this; }
BigInt operator += (const LL& b) { *this=*this+b; return *this; }
BigInt operator -= (const BigInt& b) { *this=*this-b; return *this; }
BigInt operator -= (const LL& b) { *this=*this-b; return *this; }
//Function of Multiply and Division
BigInt operator * (const BigInt& b) const
{
BigInt x=*this;
BigInt y=b;
BigInt ans;
if ((x.Positive && y.Positive) || (!x.Positive && !y.Positive)) ans.Positive=1;
else ans.Positive=0;
int m=x.VecNum,n=y.VecNum;
int L=m+n+1;
ans.VecNum=L;
ans.A.resize(L+3);
Rep(0,m,i)
Rep(0,n,j)
{
int pos=i+j;
LL t=x.A[i]*y.A[j];
int post=0;
while (t>0)
{
ans.A[pos+post]+=t%IntMod;
t/=IntMod;
post++;
}
}
Rep(0,L,i) { ans.A[i + 1] += ans.A[i] / IntMod; ans.A[i] %= IntMod; }
while (ans.A[L - 1] == 0 && ((L-1)!=0) ) { ans.VecNum--; ans.A.pop_back(); L--; }
return ans;
}
BigInt operator * (const LL &b) const { BigInt x(b); return (*this) * x; }
BigInt operator * (const string b) const { BigInt x(b); return (*this) * x; }
BigInt operator *= (const BigInt& b){ *this = *this * b; return *this; }
BigInt operator *= (const LL &b) { *this = *this * b; return *this; }
BigInt operator *= (const string b) { *this = *this * b; return *this; }
//Function of BITS
}f[201];
int main()
{
LL a=1;
f[1]=BigInt(1);
f[2]=BigInt(2);
for(int i=3;i<=200;i++) f[i]=f[i-1]+f[i-2];
int n;
while(scanf("%d",&n)!=EOF) {
cout<return 0;
}
度熊所居住的 D 国,是一个完全尊重人权的国度。以至于这个国家的所有人命名自己的名字都非常奇怪。一个人的名字由若干个字符组成,同样的,这些字符的全排列的结果中的每一个字符串,也都是这个人的名字。例如,如果一个人名字是 ACM,那么 AMC, CAM, MAC, MCA, 等也都是这个人的名字。在这个国家中,没有两个名字相同的人。
度熊想统计这个国家的人口数量,请帮助度熊设计一个程序,用来统计每一个人在之前被统计过多少次。
这里包括一组测试数据,第一行包含一个正整数NNN,接下来的NNN 行代表了 NNN 个名字。NNN 不会超过100,000100,000100,000,他们的名字不会超过40位.
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define fi first
#define se second
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
map<string,int> h;
map<string,int>::iterator it;
string s;
int main()
{
// freopen("d.in","r",stdin);
// freopen(".out","w",stdout);
int n;
scanf("%d",&n);
For(i,n) {
cin>>s;
sort(s.begin(),s.end());
it=h.find(s);
if (it==h.end()){
h[s]=1;
puts("0");
}else {
printf("%d\n",(it->se)++);
}
}
return 0;
}