- 探秘3D UNet-PyTorch:高效三维图像分割利器
鲍凯印Fox
探秘3DUNet-PyTorch:高效三维图像分割利器在医学影像处理、计算机视觉和自动驾驶等领域,三维图像的理解与分析至关重要。而是一个基于PyTorch实现的深度学习模型,专为三维图像分割任务设计。本文将深入剖析该项目的技术细节,应用场景及特性,以期吸引更多的开发者和研究人员参与其中。项目简介3DUNet是2DUNet的三维扩展,其结构保持了卷积神经网络的对称性,采用跳跃连接的方式保留了不同尺度
- 使用3DUNet训练自己的数据集(pytorch)— 医疗影像分割
编程日记✧
智能医疗pytorch人工智能python计算机视觉图像处理深度学习健康医疗
代码:lee-zq/3DUNet-Pytorch:3DUNetimplementedwithpytorch(github.com)文章<cicek16miccai.pdf(uni-freiburg.de)3DU-Net:LearningDenseVolumetricSegmentation
- 中文车牌识别系统 `End-to-end-for-Chinese-Plate-Recognition` 教程
皮静滢Annette
中文车牌识别系统End-to-end-for-Chinese-Plate-Recognition教程End-to-end-for-chinese-plate-recognition基于u-net,cv2以及cnn的中文车牌定位,矫正和端到端识别软件,其中unet和cv2用于车牌定位和矫正,cnn进行车牌识别,unet和cnn都是基于tensorflow的keras实现项目地址:https://gi
- 【论文阅读33】Deep learning optoacoustic tomography with sparse data
弹伦琴的雷登
【论文阅读系列】人工智能深度学习论文阅读图像处理
Deeplearningoptoacoustictomographywithsparsedata论文题目:基于稀疏数据的深度学习光声断层扫描论文链接:Deeplearningoptoacoustictomographywithsparsedata|NatureMachineIntelligence代码链接:GitHub-ndavoudi/sparse_artefact_unet数据链接:Data发
- unet各模块内容的理解(包含注意力机制、残差、以及数据维度的变化)
云梦之上
#扩散模型系统性学习人工智能神经网络pytorch
文章目录attention机制Unet的各个模块的设计①残差块②下块做一次残差,做一次自注意力③上块:这里做了skipconnect,做一次残差,做一次注意力④中块:做两次残差和一次自注意力⑤上采样:通道数不变,长宽翻两倍⑥下采样:通道数不变,长宽缩小到原来的一半整个unet模块unet模块的示意图参考的unet代码unet代码attention机制参考内容:超详细图解Self-Attention
- Unet改进10:在不同位置添加CPCA||通道先验卷积注意力机制
AICurator
Unet改进专栏深度学习神经网络unet语义分割
本文内容:在不同位置添加CPCA注意力机制目录论文简介1.步骤一2.步骤二3.步骤三4.步骤四论文简介低对比度和显著的器官形状变化等特征经常出现在医学图像中。现有注意机制的自适应能力普遍不足,限制了医学影像分割性能的提高。本文提出了一种有效的通道先验卷积注意(CPCA)方法,该方法支持通道和空间维度上注意权重的动态分布。通过采用多尺度深度卷积模块,有效地提取空间关系,同时保留先验通道。CPCA具有
- 图像算法实习生--面经1
小豆包的小朋友0217
算法
系列文章目录文章目录系列文章目录前言一、为什么torch里面要用optimizer.zero_grad()进行梯度置0二、Unet神经网络为什么会在医学图像分割表现好?三、transformer相关问题四、介绍一下胶囊网络的动态路由五、yolo系列出到v9了,介绍一下你最熟悉的yolo算法六、一阶段目标检测算法和二阶段目标检测算法有什么区别?七、讲一下剪枝八、讲一下PTQandQAT量化的区别九、
- ubuntu 14.04.4 install
xuyss
ubuntuubuntu14.04.4
Tool:unetbootin-windows-608.exehttps://unetbootin.github.io/ISO:ubuntu-14.04.4-server-amd64.isohttp://mirrors.yun-idc.com/ubuntu-releases/14.04.4/FAQ:Whenyougettheerror,Alt+F2toasecondconsole.Findoutt
- 千卡利用率超98%,详解JuiceFS在权威AI测试中的实现策略
机器学习人工智能运维
2023年9月,AI领域的权威基准评测MLPerf推出了StorageBenchmark。该基准测试通过模拟机器学习I/O负载的方法,在不需要GPU的情况下就能进行大规模的性能压测,用以评估存储系统的在AI模型训练场景的适用性。目前支持两种模型训练:BERT(自然语言模型)和Unet3D(3D医学成像)。虽然目前不支持大语言模型如GPT、LLaMA,但BERT与大语言模型同为多层transform
- Stable Diffusion算法、结构全流程概述
lanlinbuaa
stablediffusionpython
StableDiffusion能力强、功能多、插件广,本文拟概述SD的全流程,方便梳理算法各结构的关系SD发展的重点论文DenoisingDiffusionProbabilisticModels(首次提出去噪扩散模型DDPM)DiffusionModelsBeatGANsonImageSynthesis(OpenAI改进UNet,DM超越GAN,ClassifierGuidance)High-Re
- 检查两个文件是否一样,可以通过比较两个文件的md5值
早起早起早起up
1.计算文件的md5,SHA1查看传输过程中有没有修改检查两个文件是否一样,可以通过比较两个文件的md5值(后续可以用这个方法来检验kevin.sql文件是否被修改)。(1).windows查看方式certutil-hashfileD:\BaiduNetdiskDownload\coding-265-master.zipMD5压缩文件查看(2)linux方式catkevin.sql.md5
- Unet 高阶分割网络实战、多类别分割、迁移学习(deeplab、resnet101等等)
听风吹等浪起
图像分割计算机视觉人工智能
1、前言Unet图像分割之前介绍了不少,具体可以参考图像分割专栏为了实现多类别的自适应分割,前段时间利用numpy的unique函数实现了一个项目。通过numpy函数将mask的灰度值提取出来,保存在txt文本里,这样txt里面就会有类似012...等等的灰度值。而有几个灰度值,就代表分割要分出几个类别。具体可以参考:Unet实战分割项目、多尺度训练、多类别分割将vgg换成resnet的unet参
- 对视频进行分块,断点续传
爱笑的人、
java
分块测试//分块测试@TestpublicvoidtestChunk()throwsIOException{//源路径FilesourceFile=newFile("D:\\BaiduNetdiskDownload\\Day1-00.项目导学.mp4");//分块文件存储路径StringchunkFilePath="D:\\develop\\chunk\\";//分块文件大小intchunkSiz
- OpenAI Sora视频模型技术原理报告解读
AI周红伟
人工智能sora技术原理Sora技术原理
▌01.OpenAISora视频生成模型技术报告总结•不管是在视频的保真度、长度、稳定性、一致性、分辨率、文字理解等方面。•技术细节写得比较泛(防止别人模仿)大概就是用视觉块编码(visualpatch)的方式,把不同格式的视频统一编码成了用transformer架构能够训练的embeding,然后引入类似diffusion的unet的方式做在降维和升维的过程中做加噪和去噪,然后把模型做得足够大,
- OpenAI Sora视频生成模型技术报告中英全文+总结+影响分析
龙腾亚太
音视频人工智能
01.OpenAISora视频生成模型技术报告总结不管是在视频的保真度、长度、稳定性、一致性、分辨率、文字理解等方面,Sora都做到了SOTA(当前最优)。技术细节写得比较泛(防止别人模仿)大概就是用视觉块编码(visualpatch)的方式,把不同格式的视频统一编码成了用transformer架构能够训练的embeding,然后引入类似diffusion的unet的方式做在降维和升维的过程中做加
- Sora专辑|OpenAI Sora视频生成模型技术报告中英全文+总结+影响分析
明矛顿了
音视频人工智能chatgpt
▌01.OpenAISora视频生成模型技术报告总结•不管是在视频的保真度、长度、稳定性、一致性、分辨率、文字理解等方面,Sora都做到了SOTA(当前最优)。•技术细节写得比较泛(防止别人模仿)大概就是用视觉块编码(visualpatch)的方式,把不同格式的视频统一编码成了用transformer架构能够训练的embeding,然后引入类似diffusion的unet的方式做在降维和升维的过程
- AcuAutomate:一款基于Acunetix的大规模自动化渗透测试与漏洞扫描工具
FreeBuf_
自动化elasticsearch运维
关于AcuAutomateAcuAutomate是一款基于Acunetix的大规模自动化渗透测试与漏洞扫描工具,该工具旨在辅助研究人员执行大规模的渗透测试任务。在大规模的安全测试活动中,AcuAutomate可以帮助我们同时启动或停止多个Acunetix扫描任务。除此之外,我们还可以将其功能无缝集成到枚举封装器或One-Liner中,并通过管道功能实现更高效的控制。工具安装由于该工具基于Pytho
- OpenAI视频生成模型Sora背后的技术及其深远的影响
知来者逆
SoraSora文字生成视频视频生成OpenAI
前言Sora的视频生成技术在保真度、长度、稳定性、一致性、分辨率和文字理解等方面都达到了当前最优水平。其核心技术包括使用视觉块编码将不同格式的视频统一编码成Transformer可训练的嵌入向量,以及类似于扩散过程的UNet方法进行降维和升维的加噪与去噪操作。通过构建足够大的模型,使其具备了智能的涌现能力,例如在一定程度上理解真实世界的物理影响和因果关系。与其他视频生成模型不同,OpenAI采用了
- Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
AI浩
高质量人类CV论文翻译深度学习人工智能计算机视觉
摘要在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算
- 机器学习案例3:从科学论文图片中提取标题、作者和摘要
suoge223
机器学习实用指南人工智能
在这个项目中,我的目标是从科学论文图片中提取某些部分(标题、作者和摘要)。预期提取部分是科学论文中常见的部分,例如标题、摘要和作者。输入与最终结果。我的输入是将第一页纸转换成图像。最终结果是一个txt文件,其中包含标题、作者和摘要部分,如下图1和图2所示。我将使用UNet来了解在哪里可以找到这些部分,然后将训练学到的信息传递到OCR中。完整的项目可以在这里找到。图1要提取的论文首页(图片格式)图2
- 跟《世界报》Le monde学法语新闻2020-6-2 l’exode des villes vers les campagnes
木星外语
对应音频讲解,可前往木星外语网站:http://muxingwaiyu.com«Opposervilleetcampagnenenousferapasavancer»(1)Dansunetribuneau«Monde»,MagaliTalandier,professeureenétudesurbainesetrégionalesàl’universitéGrenoble-Alpes,décritl
- Go ahead
AngelaTong
Howmanytimesareyouhopeless?Howmanytimesareyouhelpless?And,howmanytimesareyoufearless?WhenIwasyoung,mymomaskedtheforunetelleraboutmyfaith"Thisgirlcouldn'tbetoohappy,otherwisebadluckwillcome"男儿命女儿身,劳苦坎坷
- Unet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割深度学习人工智能机器学习
1.介绍之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。缺点就是没法实现多类别的分割,具体可以参考:二值图像分割统一项目本章只对增加的代码进行介绍,其余的参考上述链接博文本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间文件目录如下:2.实现
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- NansException: A tensor with all NaNs was produced in Unet. This could be either because there‘s not
mhack5200
python开发语言人工智能作画windows
最近下载个XL模型,用图生图时提示NansException:AtensorwithallNaNswasproducedinUnet.Thiscouldbeeitherbecausethere'snotenoughprecisiontorepresentthepicture,orbecauseyourvideocarddoesnotsupporthalftype,找了一堆方法,最终有个是成功,在次
- Stable Diffusion ubuntu 部署,问题记录
丿|一口亅皓桀
StableDiffusionstablediffusion
问题一在使用图生图时,报错NansException:AtensorwithallNaNswasproducedinUnet.Thiscouldbeeitherbecausethere'snotenoughprecisiontorepresentthepicture,orbecauseyourvideocarddoesnotsupporthalftype.Trysettingthe"Upcastc
- BaiduNetdiskPlugin Mac版百度网盘超级会员插件
产品U理
这次Mac毒为大家带来一款百度网盘客户端的超级会员插件,可以开启无限免费试用功能,速度杠杠的,需要的小伙伴可以试试,安装方法也很简单。由于本教程是基于百度网盘官方客户端而进行破解的,所以小伙伴们请务必先下载官方版的客户端哦,官方下载地址「https://pan.baidu.com/download」。安装教程1.下载并安装完成百度网盘客户端后,打开Mac的「终端」应用。不知道在哪里的可以按快捷键「
- 登录功能渗透测试
软件测试很重要
安全性测试
登录功能渗透测试登录功能的渗透测试是一种安全评估方法,用于检测Web应用程序中的登录系统是否存在安全漏洞。进行登录功能渗透测试时,测试者会尝试通过各种手段来模拟攻击者的行为,以发现和利用可能的安全弱点。以下是进行登录功能渗透测试时可以采取的几种常见方法:自动化扫描工具:使用AWVS(AcunetixWebVulnerabilityScanner)和Nessus等工具进行自动化扫描,这些工具可以帮助
- 公开 学生课堂行为数据集 SCB-Dataset 2 Student Classroom Behavior dataset
计算机视觉-杨帆
数据集学生行为
公开学生课堂行为数据集SCB-Dataset2StudentClassroomBehaviordatasetb站:https://www.bilibili.com/video/BV1cW4y197Ah/arxiv:https://arxiv.org/pdf/2306.03318.pdfgithub:https://github.com/Whiffe/SCB-dataset百度云:BaiduNetd
- Swin-UMamba:结合基于ImageNet的预训练和基于Mamba的UNet模型
AI浩
人工智能计算机视觉
摘要https://arxiv.org/pdf/2402.03302v1.pdf准确的医学图像分割需要整合从局部特征到全局依赖的多尺度信息。然而,现有方法在建模长距离全局信息方面面临挑战,其中卷积神经网络(CNNs)受限于其局部感受野,而视觉转换器(ViTs)则受到其注意力机制高二次复杂度的困扰。最近,基于Mamba的模型因其在长序列建模中的出色能力而备受关注。多项研究表明,这些模型在各种任务中可
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在