参考内容:
超详细图解Self-Attention
首先是计算QKV的矩阵的值,然后是利用QK计算相关性,然后更具相关性重构v
这里需要结合代码来理解其中的维度变换过程
class AttentionBlock(Module):
"""
### Attention block
This is similar to [transformer multi-head attention](../../transformers/mha.html).
"""
#只需要输入输入的数据的通道,因为后续的通道数不会发生改变
def __init__(self, n_channels: int, n_heads: int = 1, d_k: int = None, n_groups: int = 32):
"""
* `n_channels` is the number of channels in the input(输入的图像的最后一个维度,图像的通道数)
* `n_heads` is the number of heads in multi-head attention(多头注意力的头的个数)
* `d_k` is the number of dimensions in each head(每个多头注意力的维度数)
* `n_groups` is the number of groups for [group normalization](../../normalization/group_norm/index.html)
"""
super().__init__()
# Default `d_k`
if d_k is None:
d_k = n_channels
#组归一化:你有一个包含64个通道的输入,并且你设置n_groups=8,那么每个组将包含8个通道,组归一化将在这8个通道上独立地计算均值和标准差,并进行归一化
self.norm = nn.GroupNorm(n_groups, n_channels)
#将通过线性变化,将通道数增大为:多头注意力头数*每个头的维度,以及*3,用来后续划分为Q、K、V
self.projection = nn.Linear(n_channels, n_heads * d_k * 3)
#输出为维度通过线性映射恢复为何输入一致
self.output = nn.Linear(n_heads * d_k, n_channels)
# Scale for dot-product attention
self.scale = d_k ** -0.5
#
self.n_heads = n_heads
self.d_k = d_k
def forward(self, x: torch.Tensor, t: Optional[torch.Tensor] = None):
"""
* `x` has shape `[batch_size, in_channels, height, width]`
* `t` has shape `[batch_size, time_channels]`
"""
# `t` is not used, but it's kept in the arguments because for the attention layer function signature
# to match with `ResidualBlock`.
_ = t
#首先得到输入数据的批量大小,通道维度,长,宽
batch_size, n_channels, height, width = x.shape
#将除通道数的维度进行合并,然后将通道数放在最后面
x = x.view(batch_size, n_channels, -1).permute(0, 2, 1)
#通过投影,将数据的维度进行提升,让其满足多头注意力的维度数
#然后将数据的维度变化为:批量大小,像素维度(比如长*宽),头数,3*头的维度
qkv = self.projection(x).view(batch_size, -1, self.n_heads, 3 * self.d_k)
#将得到QKV按照最后一个维度进行维度划分,得到QKV矩阵
q, k, v = torch.chunk(qkv, 3, dim=-1)
#QK进行点积计算,维度变为:批量,像素维度,像素维度,头数
attn = torch.einsum('bihd,bjhd->bijh', q, k) * self.scale
#将第二个维度归一化
attn = attn.softmax(dim=2)
#attn与v进行点积,实现加权计算,维度变为和输入的QKV一样:批量,像素大小,头数,每头维度
res = torch.einsum('bijh,bjhd->bihd', attn, v)
#将结果的最后两个维度合并:头数,像素大小,升维的维度
res = res.view(batch_size, -1, self.n_heads * self.d_k)
#将结果的维度调整为和输入一致
res = self.output(res)
#做残差连接
res += x
#将将结果的维度调整为和输入一致,将长和宽拆开
res = res.permute(0, 2, 1).view(batch_size, n_channels, height, width)
#
return res
class ResidualBlock(Module):
"""
### Residual block
A residual block has two convolution layers with group normalization.
Each resolution is processed with two residual blocks.
"""
#输入:需要输入通道,和输出通道,最后让输入通道变为输出通道
def __init__(self, in_channels: int, out_channels: int, time_channels: int,
n_groups: int = 32, dropout: float = 0.1):
"""
* `in_channels` is the number of input channels
* `out_channels` is the number of input channels
* `time_channels` is the number channels in the time step ($t$) embeddings
* `n_groups` is the number of groups for [group normalization](../../normalization/group_norm/index.html)
* `dropout` is the dropout rate
"""
super().__init__()
# Group normalization and the first convolution layer
self.norm1 = nn.GroupNorm(n_groups, in_channels)
self.act1 = Swish()
#通过卷积将输入的通道转化为输出的通道
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), padding=(1, 1))
# Group normalization and the second convolution layer
self.norm2 = nn.GroupNorm(n_groups, out_channels)
self.act2 = Swish()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=(3, 3), padding=(1, 1))
# If the number of input channels is not equal to the number of output channels we have to
# project the shortcut connection
# 如果x的维度不一致,则用卷积进行维度的变换
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=(1, 1))
else:
self.shortcut = nn.Identity()
# Linear layer for time embeddings
#对于时间嵌入,将输入的时间嵌入通道转化为输出的通道
self.time_emb = nn.Linear(time_channels, out_channels)
self.time_act = Swish()
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor, t: torch.Tensor):
"""
* `x` has shape `[batch_size, in_channels, height, width]`
* `t` has shape `[batch_size, time_channels]`
"""
# First convolution layer
h = self.conv1(self.act1(self.norm1(x)))
# Add time embeddings
#时间和输入的x都转化为相同的通道后就可以进行相加了
#在最后添加两个维度,例如如果时间嵌入维度为:32,100 则变为了 32,100,1,1,这里只是改变了张量的形状,而没有改变数据
h += self.time_emb(self.time_act(t))[:, :, None, None]
# Second convolution layer
h = self.conv2(self.dropout(self.act2(self.norm2(h))))
# Add the shortcut connection and return
#做残差相加
return h + self.shortcut(x)
class DownBlock(Module):
"""
### Down block
This combines `ResidualBlock` and `AttentionBlock`. These are used in the first half of U-Net at each resolution.
"""
def __init__(self, in_channels: int, out_channels: int, time_channels: int, has_attn: bool):
super().__init__()
#通过残差块,将输入的维度转化为out_channels
self.res = ResidualBlock(in_channels, out_channels, time_channels)
if has_attn:
self.attn = AttentionBlock(out_channels)
else:
#不需要注意时,结果不变,为其本身
self.attn = nn.Identity()
def forward(self, x: torch.Tensor, t: torch.Tensor):
#做一次残差
x = self.res(x, t)
#做一次注意力,如果不需要注意力,那么结果不变
x = self.attn(x)
return x
class UpBlock(Module):
"""
### Up block
This combines `ResidualBlock` and `AttentionBlock`. These are used in the second half of U-Net at each resolution.
"""
def __init__(self, in_channels: int, out_channels: int, time_channels: int, has_attn: bool):
super().__init__()
#输入和输出的通道式相等,将之间下采样的结果和传入到当前块的结果concatenate起来作为了新的输入
# The input has `in_channels + out_channels` because we concatenate the output of the same resolution
# from the first half of the U-Net
self.res = ResidualBlock(in_channels + out_channels, out_channels, time_channels)
if has_attn:
self.attn = AttentionBlock(out_channels)
else:
self.attn = nn.Identity()
def forward(self, x: torch.Tensor, t: torch.Tensor):
x = self.res(x, t)
x = self.attn(x)
return x
class MiddleBlock(Module):
"""
### Middle block
It combines a `ResidualBlock`, `AttentionBlock`, followed by another `ResidualBlock`.
This block is applied at the lowest resolution of the U-Net.
"""
def __init__(self, n_channels: int, time_channels: int):
super().__init__()
self.res1 = ResidualBlock(n_channels, n_channels, time_channels)
self.attn = AttentionBlock(n_channels)
self.res2 = ResidualBlock(n_channels, n_channels, time_channels)
def forward(self, x: torch.Tensor, t: torch.Tensor):
x = self.res1(x, t)
x = self.attn(x)
x = self.res2(x, t)
return x
class Upsample(nn.Module):
"""
### Scale up the feature map by $2 \times$
"""
def __init__(self, n_channels):
super().__init__()
#反卷积函数,通道数不变,实现宽度和高度翻两倍
self.conv = nn.ConvTranspose2d(n_channels, n_channels, (4, 4), (2, 2), (1, 1))
def forward(self, x: torch.Tensor, t: torch.Tensor):
# `t` is not used, but it's kept in the arguments because for the attention layer function signature
# to match with `ResidualBlock`.
_ = t
return self.conv(x)
class Downsample(nn.Module):
"""
### Scale down the feature map by $\frac{1}{2} \times$
"""
def __init__(self, n_channels):
super().__init__()
#用卷积实现下采样,通道数不变,长宽减少一倍
self.conv = nn.Conv2d(n_channels, n_channels, (3, 3), (2, 2), (1, 1))
def forward(self, x: torch.Tensor, t: torch.Tensor):
# `t` is not used, but it's kept in the arguments because for the attention layer function signature
# to match with `ResidualBlock`.
_ = t
return self.conv(x)
R为残差,A为注意力,x为上一步的输出,up为上采样,down为下采样
class UNet(Module):
"""
## U-Net
"""
def __init__(self, image_channels: int = 3, n_channels: int = 64,
ch_mults: Union[Tuple[int, ...], List[int]] = (1, 2, 2, 4),
is_attn: Union[Tuple[bool, ...], List[bool]] = (False, False, True, True),
n_blocks: int = 2):
"""
* `image_channels` is the number of channels in the image. $3$ for RGB.输入的图像通道
* `n_channels` is number of channels in the initial feature map that we transform the image into图像的初始化通道,一般是将图像通过VAE编码为4,64,64的维度。
* `ch_mults` is the list of channel numbers at each resolution. The number of channels is `ch_mults[i] * n_channels`#每一个层的通道数与输入通道数的倍数关系,一开始为1,然后2表示扩大的2倍。
* `is_attn` is a list of booleans that indicate whether to use attention at each resolution是否用注意力,默认为第3,4块需要,那么1,2块就只是做了残差了
* `n_blocks` is the number of `UpDownBlocks` at each resolution
#每层的上下块的个数
"""
super().__init__()
# Number of resolutions
#计算层数:为4
n_resolutions = len(ch_mults)
# Project image into feature map
#将图像的通道数通过卷积提升到64
self.image_proj = nn.Conv2d(image_channels, n_channels, kernel_size=(3, 3), padding=(1, 1))
# Time embedding layer. Time embedding has `n_channels * 4` channels
#时间嵌入模块的通道数为256
self.time_emb = TimeEmbedding(n_channels * 4)
# #### First half of U-Net - decreasing resolution
down = []
# Number of channels
#刚开始输入输出通道都一样为64
out_channels = in_channels = n_channels
# For each resolution
#对设计前半个unet的每一块,总共有4块
for i in range(n_resolutions):
# Number of output channels at this resolution
#,每一块的通道数由resolution指定
out_channels = in_channels * ch_mults[i]
# Add `n_blocks`
#每一块包含的小块的个数由n_blocks指定,默认为2
for _ in range(n_blocks):
down.append(DownBlock(in_channels, out_channels, n_channels * 4, is_attn[i]))
in_channels = out_channels
# Down sample at all resolutions except the last
#在每一块的最后下采样,最后一块不需要,所以只有1,2,3 需要下采样3次,按照图像是下采样4次。
if i < n_resolutions - 1:
down.append(Downsample(in_channels))
# Combine the set of modules
self.down = nn.ModuleList(down)
# Middle block
#中间层,做两次残差,一次注意力
self.middle = MiddleBlock(out_channels, n_channels * 4, )
# #### Second half of U-Net - increasing resolution
up = []
# Number of channels
in_channels = out_channels
# For each resolution
for i in reversed(range(n_resolutions)):
# `n_blocks` at the same resolution
#这里不改变通道数,有2块上块
out_channels = in_channels
for _ in range(n_blocks):
up.append(UpBlock(in_channels, out_channels, n_channels * 4, is_attn[i]))
# Final block to reduce the number of channels
out_channels = in_channels // ch_mults[i]
#再来一块进行通道数的改变
up.append(UpBlock(in_channels, out_channels, n_channels * 4, is_attn[i]))
in_channels = out_channels
# Up sample at all resolutions except last
if i > 0:
up.append(Upsample(in_channels))
# Combine the set of modules
self.up = nn.ModuleList(up)
# Final normalization and convolution layer
self.norm = nn.GroupNorm(8, n_channels)
self.act = Swish()
self.final = nn.Conv2d(in_channels, image_channels, kernel_size=(3, 3), padding=(1, 1))
def forward(self, x: torch.Tensor, t: torch.Tensor):
"""
* `x` has shape `[batch_size, in_channels, height, width]`
* `t` has shape `[batch_size]`
"""
# Get time-step embeddings
t = self.time_emb(t)
# Get image projection
#将图像的维度投影到我门需要的维度,一般为64
x = self.image_proj(x)
#用一个列表来存储我们上半部分的unet产生的结果,用于后半部分的concatenate
# `h` will store outputs at each resolution for skip connection
h = [x]
# First half of U-Net
#每一次下采用后将输出的结果存入h中
for m in self.down:
x = m(x, t)
h.append(x)
# Middle (bottom)
x = self.middle(x, t)
# Second half of U-Net
for m in self.up:
if isinstance(m, Upsample):
#如果是上采样块则直接进行上采样计算
x = m(x, t)
else:
# Get the skip connection from first half of U-Net and concatenate
#如果不是上采样块,那么先将x与unet上半部分的输出做concatenate
s = h.pop()
#这里沿着第1维度做拼接,实际上就是channel 的增加
x = torch.cat((x, s), dim=1)
#每一个非上采样的上块都会与之前的x做concatenate,所以输入的维度都是翻了2倍
x = m(x, t)
# Final normalization and convolution
return self.final(self.act(self.norm(x)))