# -*- coding:utf-8 -*-
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
#声明输入图片数据,类别
x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])
#输入图片数据转化
x_image= tf.reshape(x, [-1,28,28,1])
#第一层卷积层,初始化卷积核参数、偏置值,卷积层5*5大小,一个通道,共有5个不同卷积核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1,1,1,1], padding='SAME')
h_conv1 = tf.nn.sigmoid(conv1 + bias1)
maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1,1,1,1], padding='SAME')
h_conv2 = tf.nn.sigmoid(conv2 + bias2)
maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1,1,1,1], padding='SAME')
h_conv3 = tf.nn.sigmoid(conv3 + bias3)
#全连接层
W_fc1 = tf.Variable(tf.truncated_normal([7*7*120, 80]))
#偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
#将卷积层的输出展开
h_pool2_flat = tf.reshape(h_conv3, [-1, 7*7*120])
#神经网络计算,并添加sigmoid激活函数
h_fcl = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#输出层,使用softmax进行多分类
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fcl, W_fc2) + b_fc2)
#损失函数
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
#使用GDO优化算法来调整参数
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
sess = tf.InteractiveSession()
#测试正确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#所有变量进行初始化
sess.run(tf.initialize_all_variables())
#获取mnist数据
mnist_data_set = input_data.read_data_sets('MNIST_data', one_hot=True)
#进行训练
start_time = time.time()
for i in range(20000):
batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
#每迭代100个batch,对当前训练数据进行测试,输出当前测试准确率
if i%20 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch_xs, y_:batch_ys})
print("step %d, training accuracy %g" %(i, train_accuracy))
#计算时间间隔
end_time = time.time()
print('time:',(end_time-start_time))
start_time = end_time
#训练数据
train_step.run(feed_dict={x:batch_xs, y_:batch_ys})
sess.close()
step 19960, training accuracy 0.99
time: 0.8118295669555664
step 19980, training accuracy 0.99
time: 0.7759251594543457