- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- AABB包围盒和OBB包围盒区别
哈市雪花
图形学AABBOBB包围盒图形学boundingbox
1.问题图形学中经常出现AABB包围盒、OBB包围盒、包围球等,这些概念初次接触时有点容易混淆;2.概念AABB:Axis-AlignedBoundingBox,轴对齐包围盒;OBB:OrientedBoundingBox,有向包围盒;包围球:外接球;OBB比包围球和AABB更加逼近物体,能显著减少包围体的个数3.其他类似的概念还有凸包、最小外接轮廓等,有兴趣的可以查阅相关资料。
- Python——turtle库
宅男很神经
开发语言python
前言:海龟绘图的起源与PythonTurtle库的哲学在计算机图形学的浩瀚世界中,Python的turtle(海龟绘图)库以其独特的魅力,为初学者打开了一扇通往可视化编程的奇妙大门。然而,其深度远不止于简单的入门,它蕴含着事件驱动、状态机、坐标几何以及与底层GUI库(Tkinter)交互的精妙机制。本指南将带您从最底层的逻辑开始,逐步向上,全面、无死角地剖析turtle库的每一个细节,揭示其内部运
- gesp c++ 七级知识点
以下是根据GESPC++七级考试大纲的超详细知识点解析与代码实现,涵盖数学函数、复杂动态规划、图论算法、哈希表等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、数学库函数1.1三角函数概念:sin(x)、cos(x)、tan(x)分别计算弧度为x的正弦、余弦、正切值。应用场景:几何计算、物理运动模拟、图形学。代码示例:#include#includeusingna
- OpenGL: OpenGL+Qt实现介绍 (一)
程序员小马兰
OpenGL+Qt计算机视觉图形渲染前端
一、通过这个教程我们能学到什么?1、计算机图形学的基础知识。2、使用OpenGL在QT中进行编程。3、使用OpenGL做出一些很酷的效果。二、需要哪些预备知识?1、熟悉C++编程语言、Qt基本操作。2、数学基础知识(线性代数、几何、三角学)。三、为什么要学习OpenGL?各种三维图形引擎,原理都类似,几乎没什么差别,学好了OpenGL对Unity3D、虚幻引擎、OSG、webGL等的使用都会有巨大
- Python 借助 Matplotlib 绘制分形图形的诀窍
Python编程之道
pythonmatplotlib信息可视化ai
Python借助Matplotlib绘制分形图形的诀窍关键词:Python,Matplotlib,分形图形,递归算法,数据可视化,数学艺术,计算机图形学摘要:本文深入探讨了使用Python和Matplotlib库绘制分形图形的核心技术。从分形数学原理入手,详细解析了多种经典分形图形的生成算法,包括曼德勃罗集、朱利亚集、科赫雪花、谢尔宾斯基三角形等。文章提供了完整的Python实现代码,结合Matp
- AR 地产互动沙盘:为地产沙盘带来变革
广州华锐视点
ar
在科技飞速发展的今天,AR(增强现实)技术应运而生,为解决传统地产沙盘的困境提供了全新的思路和方法。AR技术,简单来说,是一种将计算机生成的虚拟信息与真实环境相融合的技术。它通过摄像头、传感器等设备获取真实场景的信息,再利用计算机图形学技术将虚拟内容与真实场景进行融合,最终通过显示器将合成图像呈现给用户,使用户在观察真实世界的同时,获得额外的信息和视觉体验。当AR技术与地产沙盘相结合,便产生了令人
- matlab 欧拉角转四元数
点云侠
matlab与合成孔径雷达matlab开发语言算法
目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述目录一、概述一、概述1、计算原理2、实现步骤3、主要函数三、代码实现四、结果展示一、概述 将欧拉角转换为四元数是计算机图形学、机器人学和物理仿真中常见的任务。欧拉角通过一系列的角度描述物体在空间中的旋转,而四元数则提供了一种更加简洁和稳定的方式来实现旋转表示。设欧拉角为(α,β,γ)(\alpha,\beta
- NeRF-Pytorch:NeRF神经辐射场复现——Pytorch版全流程分析与测试【Ubuntu20.04】【2025最新版!!!】
那就举个栗子!
三维重建计算机视觉人工智能
一、引言在计算机视觉和计算机图形学的交叉领域中,视图合成(ViewSynthesis)一直是一个充满挑战的研究方向。传统的三维重建方法往往需要复杂的几何建模和纹理映射过程,而且在处理复杂光照和材质时效果有限。2020年,来自UCBerkeley的研究团队提出了NeuralRadianceFields(NeRF),这一革命性的方法彻底改变了我们对三维场景表示和渲染的理解。NeRF的核心思想是将三维场
- OpenGL-什么是软OpenGL/软渲染/软光栅?
软OpenGL(SoftwareOpenGL)或者软渲染指完全通过CPU模拟实现的OpenGL渲染方式(包括几何处理、光栅化、着色等),不依赖GPU硬件加速。这种模式通常性能较低,但兼容性极强,常用于不支持硬件加速的环境或开发调试。例如在集成显卡HD620上运行SolidWorks时,若驱动不支持硬件加速,系统会自动回退到软件OpenGL模式(即"软件opengl")进行渲染。计算机图形学中也
- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 数智管理学(二十五)
虚谷23
数智管理学人工智能网络大数据企业数智化创业创新
三、动态资源优化的实现技术动态资源配置的实现离不开先进的技术支撑,以下几项技术是其关键要素:(一)数字孪生技术:虚拟映射真实资源1.虚拟模型构建与实时同步数字孪生技术通过传感器采集物理资源的各种数据,如设备的几何形状、物理特性、运行状态等,利用计算机图形学、建模技术和仿真技术,构建出与物理资源高度相似的虚拟模型。在智能工厂中,对于每一台生产设备,都可以建立对应的数字孪生模型,该模型不仅包括设备的外
- vtk和opencv和opengl直接的区别是什么?
only-lucky
opencv人工智能计算机视觉
简介VTK、OpenCV和OpenGL是三个在计算机图形学、图像处理和可视化领域广泛使用的工具库,但它们在功能、应用场景和底层技术上存在显著差异。以下是它们的核心区别和特点对比:1.核心功能与定位工具核心功能主要应用领域VTK(VisualizationToolkit)三维可视化&科学计算,提供高级渲染、体绘制、交互式可视化医学影像、地质建模、流体力学仿真OpenCV(OpenSourceComp
- WebGL&图形学总结(二)
GISer_Jinger
中大厂面试webgl前端javascript
一、简历中图形学与渲染相关内容梳理(一)专业技能中的图形学储备WebGL与Shader编程:掌握GPU渲染管线原理,能使用GLSL编写着色器,熟悉ShadowMapping、RTT等图形算法。三维引擎应用:熟练使用Three.js和Cesium.js,具备三维场景搭建与高效渲染能力。可视化技术:熟悉Canvas、SVG,掌握GPU加速渲染与主流三维引擎集成(如WebGL与Cesium结合)。(二)
- Perlin柏林噪音算法的Java实现
程序逐梦人
算法java开发语言Java
Perlin柏林噪音算法的Java实现柏林噪音是一种用于生成自然、有机和随机纹理的算法。它在计算机图形学、游戏开发和模拟领域中得到广泛应用。本文将介绍如何使用Java实现Perlin柏林噪音算法,并提供相应的源代码。Perlin柏林噪音算法的原理是基于一种平滑的插值方法,通过对不同频率和振幅的噪音值进行叠加,生成连续的随机值。以下是Java代码实现Perlin柏林噪音算法的示例:importjav
- 3D门锁门把模型设计的探索与实践
半清斋
本文还有配套的精品资源,点击获取简介:本文探讨了如何利用计算机图形学和3D建模技术设计逼真、实用且美观的门锁及门把手数字模型。涵盖了从设计到渲染的全过程,包括功能与安全性、材料与质感、细节处理、装配与动画、渲染后期处理以及文件格式的兼容性和标准化定制。同时,利用高级建模软件如Autodesk3dsMax或Blender,提供了详细的3D模型构建、编辑与优化方法。1.计算机图形学和3D建模技术应用在
- 贝塞尔曲线与动画效果:从基础到进阶
江卓尔
贝塞尔曲线动画效果三次贝塞尔二次贝塞尔HTML5Canvas
贝塞尔曲线与动画效果:从基础到进阶背景简介在计算机图形学中,贝塞尔曲线是一种用于设计光滑曲线的重要工具。在动画和游戏开发中,贝塞尔曲线经常被用来生成平滑的运动路径。本章节将深入探讨贝塞尔曲线在动画中的应用,以及如何在HTML5Canvas上模拟物理效果以增强动画的真实感。贝塞尔曲线的基础应用三次贝塞尔曲线需要四个控制点来定义其形状。在本章节中,作者通过一个环形移动对象的示例,向我们展示了三次贝塞尔
- C语言实现矩阵转置
人才程序员
C语言系列课程c语言矩阵算法开发语言后端软件工程软件构建
文章目录C语言实现矩阵转置1.什么是矩阵转置?2.矩阵转置的C语言实现2.1定义矩阵2.2转置矩阵2.3示例代码2.4代码解析3.运行示例4.总结C语言实现矩阵转置矩阵转置是线性代数中的一个基本操作,它将一个矩阵的行和列交换。在计算机中,矩阵转置常常用来处理数据结构的优化、图像处理、图形学等领域。在C语言中,实现矩阵转置相对简单。本文将详细介绍矩阵转置的概念、实现方法,并通过示例代码来帮助你理解矩
- 物理学中的群论:三维空间转动变换
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
物理学中的群论:三维空间转动变换1.背景介绍1.1问题的由来在物理学领域,特别是量子力学和相对论中,研究物体在空间中的运动是至关重要的。物体的位置、速度以及更深层次的内在性质都受到物理定律的严格规范。当讨论物体的旋转运动时,数学描述变得尤为重要。在三维空间中,物体的旋转可以通过一组称为“旋转矩阵”或者“欧拉角”的方式来精确描述。这些描述方式不仅在理论物理学中不可或缺,也是计算机图形学、机器人学、航
- 算法导论第十八章 计算几何:算法中的空间艺术
第十八章计算几何:算法中的空间艺术“几何学是描绘宇宙秩序的永恒诗篇。”——约翰内斯·开普勒计算几何将数学的优雅与算法的实用性完美结合,在计算机图形学、机器人导航和地理信息系统中扮演着关键角色。本章将带您探索几何问题的算法解决方案,从基础的点线关系到复杂的空间剖分,揭示算法如何理解和操纵我们的几何世界。18.1几何基础:点、线和多边形18.1.1几何对象的表示在计算几何中,我们使用简洁的数学结构表示
- 线性代数导引:附录:行列式几何解释
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍线性代数是数学中的一个重要分支,它研究的是向量空间和线性变换。在计算机科学中,线性代数被广泛应用于图形学、机器学习、数据挖掘等领域。行列式是线性代数中的一个重要概念,它可以用来求解线性方程组的解、计算矩阵的逆、判断矩阵是否可逆等问题。本文将介绍行列式的几何解释,帮助读者更好地理解行列式的概念和应用。2.核心概念与联系2.1向量的叉积向量的叉积是指两个向量的乘积得到的另一个向量。设向量$
- 分段贝塞尔曲线
士兵突击许三多
matlab基础贝塞尔曲线matlab贝塞尔曲线
分段贝塞尔曲线什么是分段贝塞尔曲线贝塞尔曲线是一种参数化曲线,广泛应用于计算机图形学和相关领域。分段贝塞尔曲线是将多条贝塞尔曲线连接起来形成的更复杂曲线,它能够表示比单条贝塞尔曲线更复杂的形状。基本概念单段贝塞尔曲线:由控制点和Bernstein基函数定义二次贝塞尔曲线(3个控制点)三次贝塞尔曲线(4个控制点)分段贝塞尔曲线:将多条贝塞尔曲线首尾相连C0连续:简单连接,曲线段在连接点处位置相同C1
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 掌握贝塞尔曲线:计算机图形学中的艺术
Compass宁
本文还有配套的精品资源,点击获取简介:贝塞尔曲线是一种在计算机图形学中被广泛使用的参数曲线,由法国工程师皮埃尔·贝塞尔提出。它在设计、动画、游戏开发和路径规划等多领域有着重要应用。通过控制点定义形状,贝塞尔曲线可通过阶数不同的多项式表示,并通过DeCasteljau算法简化计算。在JavaScript环境中,使用贝塞尔曲线可以创建动态效果,并且贝塞尔曲线的源代码包可能包含必要的实现文件。掌握贝塞尔
- 三次贝塞尔曲线绘制与OpenGL实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:三次贝塞尔曲线是计算机图形学中用于平滑插值和形状设计的重要数学模型,由四个控制点定义。本文将详细解释其基本原理、数学公式,并结合OpenGL的使用方法,探讨其在可视化领域的应用。通过实践操作和源代码分析,学习者将掌握绘制三次贝塞尔曲线的技能,并理解其在游戏开发、UI设计和3D建模中的重要性。1.三次贝塞尔曲线基础概念在计算机图形学领域中,三次贝塞尔曲线是构建光
- 线性代数导引:欧几里得空间
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍线性代数作为计算机科学的基石之一,对人工智能、数据科学、计算机图形学等多个领域都有着深远的影响。本篇博客文章将从欧几里得空间的定义入手,逐步深入讲解线性代数中的核心概念和原理,并结合实际应用场景,展示其强大的计算能力和广泛的适用性。1.1线性代数与欧几里得空间线性代数主要研究线性方程组、向量空间、矩阵等数学工具,以及它们在解决实际问题中的应用。其中,欧几里得空间是线性代数中最为基础和重
- 怎么利用JS根据坐标判断构成单个多边形是否合法
小眼哥
GIS开发前端javascript前端开发语言
怎么利用JS根据坐标判断构成单个多边形是否合法引言在GIS(地理信息系统)、游戏开发、计算机图形学等领域,判断一组坐标点能否构成合法的简单多边形(SimplePolygon)是一个常见需求。合法多边形需要满足几何学上的基本规则,本文将详细介绍如何使用JavaScript实现这一判断。一、什么是合法的简单多边形合法的简单多边形需满足以下条件:顶点数量:至少3个顶点(非共线)闭合性:首尾顶点必须重合(
- A星算法AStarPAth实现2D、3D寻路
我在北京coding
算法unity
A星(A*)算法是一种广泛应用的路径搜索和寻路算法,尤其在游戏开发和图形学领域中,用于解决二维和三维空间中的导航问题。它结合了最佳优先搜索(如Dijkstra算法)和启发式搜索的优点,能够在保证找到最优路径的同时,有效地减少搜索空间,提高搜索效率。A*算法的核心在于它使用了一个评估函数来衡量从起点到目标点的估计成本,这个函数通常由两部分组成:实际代价(g(n))和预计未来代价(h(n))。实际代价
- OpenGL混合排序实例 - C/C++编写
DarcyCode
c语言c++算法C/C++
OpenGL混合排序实例-C/C++编写在计算机图形学中,混合(blending)是指将两个或多个颜色值按照一定的规则进行合成的过程。在OpenGL中,混合功能是通过混合方程式和混合因子来实现的。混合排序是一种优化技术,用于渲染多个透明物体时避免渲染顺序引起的不正确混合结果。本文将介绍如何使用OpenGL和C/C++编写一个简单的混合排序示例。首先,我们需要创建一个OpenGL窗口和渲染上下文。这
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少