pytorch 实现SSD详细理解 (一)vgg和特征图的提取

摘要

本章就开始进入SSD的学习,通过学习这些基础的目标检测算法更好的对比理解其它算法,多看几种代码的写法更容易找到适合自己书写的套路。

ssd网络的6个特征图

ssd采用的是vgg16的特征提取,在vgg16中提取二个特征图,之后又通过额外的增加卷积操作再次提取四个特征图,一种6个特征图。如下图
pytorch 实现SSD详细理解 (一)vgg和特征图的提取_第1张图片
仔细看这里的特征图,第一个输出是(512,38,38)的特征图,这个是在vgg16中的第22层的输出(一共34层包含了relu()所以这么多),第二个输出是(1024,19,19)的特征图输出,这里是vgg最后一层的输出,这里有一个细节,所以先来看vgg的构造

import torch.nn.init as init
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from math import sqrt as sqrt
from itertools import product as product
base = {
    '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
            512, 512, 512],
    '512': [],
}
def vgg(cfg, i, batch_norm=False):
    layers = []
    in_channels = i
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        elif v == 'C':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
    conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
    conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
    layers += [pool5, conv6,
               nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
    return layers
    layers=vgg(base[str(300)], 3)
print(nn.Sequential(*layers))

这部分代码很简单,主要是看下网络构造,网络结构如下

Sequential(
  (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): ReLU(inplace)
  (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (3): ReLU(inplace)
  (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (6): ReLU(inplace)
  (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (8): ReLU(inplace)
  (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (11): ReLU(inplace)
  (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (13): ReLU(inplace)
  (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (15): ReLU(inplace)
  (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
  (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (18): ReLU(inplace)
  (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (20): ReLU(inplace)
  (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (22): ReLU(inplace)
  (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (25): ReLU(inplace)
  (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (27): ReLU(inplace)
  (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (29): ReLU(inplace)
  (30): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
  (31): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6))
  (32): ReLU(inplace)
  (33): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
  (34): ReLU(inplace)
)

第一次的特征图输出是在(22)处,一共经历3次池化,所以特征图大小是3838,之后用进行二次maxpool2d 特征图在最后输出应该是1010的大小,但最后一层的maxpool2d的stride=1所以特征图大小还是19在来看看通过增加额外的卷积来输出特征图,

extras = {
    '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
    '512': [],
}
def add_extras(cfg, i, batch_norm=False):
    # Extra layers added to VGG for feature scaling
    layers = []
    in_channels = i
    flag = False
    for k, v in enumerate(cfg):
        if in_channels != 'S':
            if v == 'S':
                layers += [nn.Conv2d(in_channels, cfg[k + 1],
                           kernel_size=(1, 3)[flag], stride=2, padding=1)]
            else:
                layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
            flag = not flag
        in_channels = v
    return layers
 add_layer = add_extras(extras[str(300)], 1024)

这部分代码也是直接对比输出理解

Sequential(
  (0): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
  (1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (2): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
  (3): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (4): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
  (5): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
  (6): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
  (7): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
)

构造了7个卷积,通过1,3,5,7卷积之后的特征图用来输出,所以这里提取了4个特征图,加在一起刚好对应图中的6个特征图部分。

6个特征图的代码

import torch.nn.init as init
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from math import sqrt as sqrt
from itertools import product as product

sources = list()
base = {
    '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
            512, 512, 512],
    '512': [],
}
def vgg(cfg, i, batch_norm=False):
    layers = []
    in_channels = i
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        elif v == 'C':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
    conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
    conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
    layers += [pool5, conv6,
               nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
    return layers
layers=vgg(base[str(300)], 3)
# print(nn.Sequential(*layers))
x=torch.rand(1,3,300,300)
for k in range(23):
    x = layers[k](x)
sources.append(x)
print(x.shape)
extras = {
    '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
    '512': [],
}
def add_extras(cfg, i, batch_norm=False):
    # Extra layers added to VGG for feature scaling
    layers = []
    in_channels = i
    flag = False
    for k, v in enumerate(cfg):
        if in_channels != 'S':
            if v == 'S':
                layers += [nn.Conv2d(in_channels, cfg[k + 1],
                           kernel_size=(1, 3)[flag], stride=2, padding=1)]
            else:
                layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
            flag = not flag
        in_channels = v
    return layers
add_layer = add_extras(extras[str(300)], 1024)
# print(nn.Sequential(*add_layer))
x = torch.rand(1,512,38,38)
for k in range(23, len(layers)):
    x = layers[k](x)

sources.append(x)
print(x.shape)
x = torch.rand(1,1024,19,19)
for k, v in enumerate(add_layer):
    x = F.relu(v(x), inplace=True)
    if k % 2 == 1:
        print(x.shape)
        sources.append(x)

产生所有的框

SSD一共输出6个特征图,在每个特征图的特征值产生的框最少4个,最多6个,一共就产生了8732个框,下面代码是产生框的实现

import torch
from itertools import product as product
from math import sqrt as sqrt
feature_maps=[38, 19, 10, 5, 3, 1]
steps=[8, 16, 32, 64, 100, 300]
aspect_ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]
image_size=300
min_sizes=[30, 60, 111, 162, 213, 264]
max_sizes=[60, 111, 162, 213, 264, 315]
mean = []
for k, f in enumerate(feature_maps):  # 6生成个特征图的全部框
    for i, j in product(range(f), repeat=2):  # 相当于二个for循环,遍历每一个特征图的点
        f_k = image_size / steps[k]
        # unit center x,y
        cx = (j + 0.5) / f_k  # 矩阵位置和现实世界的xy刚好相反
        cy = (i + 0.5) / f_k

        # aspect_ratio: 1
        # rel size: min_size
        s_k = min_sizes[k] / image_size
        mean += [cx, cy, s_k, s_k]  # 第一种大小的框产生

        # aspect_ratio: 1
        # rel size: sqrt(s_k * s_(k+1))
        s_k_prime = sqrt(s_k * (max_sizes[k] / image_size))
        mean += [cx, cy, s_k_prime, s_k_prime]  # 第二种大小的框产生

        # rest of aspect ratios
        for ar in aspect_ratios[k]:  # 这一步要么产生二种大小,要么是四种大小,刚好对应
            mean += [cx, cy, s_k * sqrt(ar), s_k / sqrt(ar)]
            mean += [cx, cy, s_k / sqrt(ar), s_k * sqrt(ar)]
# back to torch land
output = torch.Tensor(mean).view(-1, 4)     #转化成tensor和变换形式一共8732
if 1:
    output.clamp_(max=1, min=0)
print(output.shape)

不用太纠结每个框的高和框的大小,每个目标检测都有特有的计算方式,都是通过大量实验所得。

你可能感兴趣的:(pytorch 实现SSD详细理解 (一)vgg和特征图的提取)