模拟赛 序列问题(时间限制:1s;空间限制:128MB)

题目描述

小H是个善于思考的学生,她正在思考一个有关序列的问题。
她的面前浮现出了一个长度为n的序列{ai},她想找出两个非空的集合S、T。
这两个集合要满足以下的条件:
1. 两个集合中的元素都为整数,且都在 [1, n] 里,即Si,Ti ∈ [1, n]。
2. 对于集合S中任意一个元素x,集合T中任意一个元素y,满足x < y。
3. 对于大小分别为p, q的集合S与T,满足
a[s1] xor a[s2] xor a[s3] ... xor a[sp] = a[t1] and a[t2] and a[t3] ... and a[tq].
小H想知道一共有多少对这样的集合(S,T),你能帮助她吗?


输入格式

第一行,一个整数n
第二行,n个整数,代表ai。

输出格式

仅一行,表示最后的答案。

样例输入

4
1 2 3 3

样例输出

4

样例解释

S = {1,2}, T = {3}, 1 ^ 2 = 3 = 3 (^为异或)
S = {1,2}, T = {4}, 1 ^ 2 = 3 = 3
S = {1,2}, T = {3,4} 1 ^ 2 = 3 & 3 = 3 (&为与运算)
S = {3}, T = {4} 3 = 3 = 3

数据范围

30%: 1 <= n <= 10
60%: 1 <= n <= 100
100%: 1 <= n <= 1000, 0 <= ai < 1024

题解

我觉的这是一道很考综合能力的题。不过事实证明,我很弱……

首先我们可以想出一种两边分开的dp:f[i][j]和g[i][j]表示前i个xor值为j,后i个and值为j的方案数, 随后枚举分界点k来求总方案数。复杂度O(n * 1024 * 3)。最终分数:60分。

#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
int n,a[1002];
ll f[1002][3000],g[1002][3000],add[1002][3000];
ll ans;
void init()
{
	scanf("%d",&n);
	int i;
	for(i=1;i<=n;i++) scanf("%d",&a[i]);
}
void dp()
{
	int i,j;
	f[1][a[1]]=1; add[1][a[1]]=1;
	for(i=2;i<=n;i++)
	   {f[i][a[i]]++; add[i][a[i]]++;
		for(j=0;j<3000;j++)
		   {if(f[i-1][j]>0)
	          {f[i][j^a[i]]+=f[i-1][j]; add[i][j^a[i]]+=f[i-1][j];
		       f[i][j]+=f[i-1][j]; 
		      }
		   }
	   }
	g[n][a[n]]=1;
	for(i=n-1;i>0;i--)
	   {g[i][a[i]]++; 
		for(j=0;j<3000;j++)
		   {if(g[i+1][j]>0)
		       {g[i][j]+=g[i+1][j];
			    g[i][j&a[i]]+=g[i+1][j];
			   }
		   }
	   }
	for(i=1;i

那天在考试的时候,我觉得这样就能A了。然而,这一题没有“取mod”操作,剩下的40分需要高精度,这一点我没有想到,所以这道题的一个收获就是:没有取mod的题要考虑它结果的范围。

那么既然需要高精度,我们肯定不能再在上面那种做法上“数组+一维”,这样空间不允许。所以,我们需要将空间也优化,并且像上面那种dp,又乘又加的不得写死……这里提出一种新的dp方程:因为“两个数相等就相当于两个数的xor为0”。设 f[i][j][k=0..2]代表从后往前处理到第 I 个数,如果 k = 1代表and值为j,如果k = 2代表xor值为 j,如果k = 0则代表之前一个元素都没取。所以很容易得到方程:
f[i][j][0] = f[i + 1][j][0]——————————其实只有j=1023且k=0时f[i][j][0]才有值且恒为1.
f[i][j & ai][1] = f[i + 1][j][1] + f[i + 1][j][0] + f[i + 1][j & ai][1]
f[i][j ^ ai][2] = f[i + 1][j][1] + f[i + 1][j][2] + f[i + 1][j ^ ai][2];
最后f[1][0][2]就是答案, 复杂度为O(n * 1024 * 3)

这样统计答案就只需要高精加了。不过为什么说我弱呢?是因为我自己写的高精加只有70分。原因大概是我重载+号的算法里有许多赋值的操作。而且其他的一些细节常数很大。这里蛮贴一下。

#include
#include
#include
#include
#include
#include
#define M 1024
#define N 1000000000
using namespace std;
int n,a[1002];
struct shu{int s[50],l;} f[2][1030][3];
void init()
{
	scanf("%d",&n);
	int i;
	for(i=1;i<=n;i++) scanf("%d",&a[i]);
}
shu operator + (const shu &x,const shu &y)
{
	shu ans;
	memset(ans.s,0,sizeof(ans.s));
	int i;
	ans.l=max(x.l,y.l);
	for(i=1;i<=ans.l;i++)
	   {ans.s[i]+=x.s[i]+y.s[i];
	    if(ans.s[i]>=N)
	       {ans.s[i+1]++;
		    ans.s[i]%=N;
		   }
	   }
	if(ans.s[ans.l+1]>0) ans.l++;
	return ans;
}
void PRINT(const shu &x)
{
	int i;
	printf("%d",x.s[x.l]);
	for(i=x.l-1;i>0;i--) printf("%09d",x.s[i]);
	printf("\n");
}
void dp()
{
	int i,j,k,now=0,next,vx,vy;
	f[0][1023][0].s[1]=1; f[0][1023][0].l=1;
	for(i=n;i>0;i--)
	   {next=now^1;
		for(j=0;j

所以比较好的方法是,重载+=,并且将其写入高精度专门的结构体内。当然常数问题自己解决,这样就能过了。

#include
#include
#include
#include
#include
#include
#define M 1024
#define N 100000000
using namespace std;
int n,a[1002];
struct shu
{
	int s[50],l;
void operator += (const shu &x)
{
	int i;
	l=max(x.l,l);
	for(i=1;i<=l;i++)
	   {s[i]+=x.s[i];
	    if(s[i]>=N)
	       {s[i+1]++; s[i]%=N;}
	   }
	if(s[l+1]>0) l++;
}
}
f[2][1030][3];
void init()
{
	scanf("%d",&n);
	int i;
	for(i=1;i<=n;i++) scanf("%d",&a[i]);
}
void PRINT(const shu &x)
{
	int i;
	printf("%d",x.s[x.l]);
	for(i=x.l-1;i>0;i--)
	   printf("%08d",x.s[i]);//这种写法很好,大概是压x位写“%0xd” 
	printf("\n");
}
void dp()
{
	int i,j,k,now=0,next,vx,vy;
	f[0][1023][0].s[1]=1; f[0][1023][0].l=1;
	for(i=n;i>0;i--)
	   {next=now^1;
		for(j=0;j

你可能感兴趣的:(动态规划,其他,线性dp,高精度加法)