- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- Python爬虫实战:研究TextBlob相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmlTextBlob
1.引言1.1研究背景与意义随着互联网技术的飞速发展,社交媒体已成为人们获取信息和表达观点的重要平台。每天在社交媒体上产生的海量文本数据蕴含着丰富的情感信息和社会舆情,分析这些文本情感倾向,有助于企业了解消费者对产品和服务的评价,政府部门监测社会舆论动态,研究机构探索公众对热点事件的态度。情感分析(SentimentAnalysis)作为自然语言处理的重要分支,旨在通过计算方法识别和提取文本中的主
- spf算法概述
香蕉割草机
网络通信spf路由
文章目录1.算法概念2.具体计算方法3.spf算法能保证最短路径的原因4.路由计算spf算法即shortestpathfirst算法–最短路径优先算法,Dijkstra算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径,它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。路由协议中的isis和ospf都使用spf算法计算路由,目的很明确,就是计算路由器自身所
- 水文学模型学习笔记:马斯京根(Muskingum)河道汇流算法
Lunar*
水文算法学习笔记
引言在水文学和水资源管理中,河道汇流演算是一个至关重要的环节。它用于预测洪水波在河道中向下游传播时的形态变化,是进行洪水预报、水库调度和防洪规划的基础。马斯京根法(MuskingumMethod)是其中最经典和应用最广泛的河道汇流计算方法之一。本文将从马斯京根法的基础理论出发,推导其演算方程,并重点解析一种更稳定和精确的改进方法——分段连续马斯京根法,最后提供并解读一个完整、鲁棒的Python实现
- 半导体材料仿真:有机半导体材料仿真_(11).有机半导体材料的制备与加工仿真
kkchenkx
信号仿真2信号处理量子计算信息可视化
有机半导体材料的制备与加工仿真1.有机半导体材料的制备仿真1.1分子动力学模拟分子动力学(MolecularDynamics,MD)模拟是一种计算方法,用于研究原子和分子在一定时间内的运动和相互作用。在有机半导体材料的制备过程中,MD模拟可以提供关于分子排列、结构稳定性和相变过程的重要信息。原理分子动力学模拟基于牛顿运动方程,通过计算系统的总势能和动能,预测系统在时间上的演化。总势能通常包括键伸缩
- 从零构建企业知识库问答系统(基于通义灵码+RAG+阿里云OSS的落地实践)
大熊计算机
开发实战阿里云云计算
1企业知识管理在大型企业环境中,知识管理面临三大痛点:信息孤岛(40%的企业知识分散在10+个系统中)、检索低效(员工平均每周浪费3.5小时查找信息)和知识流失(专家离职导致关键经验断层)。传统解决方案如Wiki或文档管理系统存在两大局限:被动检索:用户需精确知道搜索关键词理解缺失:无法解析"季度营收增长率计算方法"等复合问题RAG(检索增强生成)技术的革命性在于将语义检索与大语言模型结合:用户问
- matlab 频谱图例子_做EEG频谱分析,看这一篇文章就够了!
weixin_39985286
matlab频谱图例子
所谓频谱分析,又称为功率谱分析或者功率谱密度(PowerSpectralDensity,PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。1.频谱分析的方法有哪些?目前来说,功率谱分析的方法大致可以分为两大类:第一类是经典的功率谱计算方法,第二类是现
- EEG分类-Alpha band power
闪电科创
算法人工智能深度学习EEG脑电信号
在脑电图(EEG)信号处理的背景下,alpha波段功率(AlphaBandPower)是一个非常重要的特征,广泛应用于认知神经科学、临床诊断、情感分析以及脑机接口(BCI)等领域。接下来,我将详细介绍alpha波段功率的定义、特性、计算方法以及在脑电图分析中的应用。1.Alpha波段的定义Alpha波指的是EEG信号中的一个频带,通常定义为8到13赫兹(Hz)的频率范围。在脑电图中,alpha波是
- EEG分类 - Theta 频带 power
闪电科创
EEG脑电信号处理分类数据挖掘人工智能EEG脑电信号
在EEG(脑电图)信号处理的背景下,theta波段功率(ThetaBandPower)是一个重要的特征,广泛应用于认知、神经科学和临床监测等领域。接下来,我将详细介绍theta波段功率的定义、特性、计算方法以及在脑电图分析中的应用。1.Theta波段的定义Theta波是EEG信号的一个频带,通常定义为4到8赫兹(Hz)的频率范围。这一波段的脑电活动与许多认知功能和生理状态相关,尤其是与放松、轻度睡
- 时间复杂度和空间复杂度入门必备知识点
不良手残
算法算法数据结构java
本文从基础概率、计算方法、常见复杂度分类、详细计算的案例入手,带读者初步了解算法复杂度:时间复杂度衡量算法执行时间随数据规模n的增长趋势,空间复杂度衡量额外内存使用情况。二者都用大O表示法,忽略系数保留最高阶项。常见时间复杂度:常数O(1)、对数O(logn)、线性O(n)、线性对数O(nlogn)、平方O(n²)、指数O(2ⁿ)。计算时需找基本操作并建立T(n)表达式。空间复杂度分析额外变量和递
- 如何计算光伏电站25年收益?
鹧鸪云光伏
光伏发电量计算光伏光伏模拟
在能源转型与环保意识日益增强的当下,光伏电站投资成为热门话题。投资者都想知道,一座光伏电站在其25年的生命周期内,究竟能带来多少收益。今天,就为大家详细解析光伏电站25年收益的计算方法,并介绍一款强大的工具——鹧鸪云,它能助您精准、快速地计算光伏电站25年的发电量和收益等关键数据。一、光伏电站收益的构成1.发电量收益:这是光伏电站收益的核心部分。电站所发的电量若用于自用,可节省用电成本;余电上网则
- 一个模块实现期货分钟 K 线计算、主连行情合成
DolphinDB智臾科技
量化金融DolphinDB期货期货交易期货行情行情行情数据量化金融
由于不同期货品种的交易时间存在差异,且不同期货合约的活跃度各不相同,因此基于期货快照行情数据合成分钟K线的计算方法在时间对齐上需要进行不同的处理。本教程旨在提升DolphinDB在具体业务场景中的应用效率,并降低其在实际业务中的开发难度。为此,我们开发了FuturesOLHC模块,通过调用该模块中定义的函数,用户可以轻松实现以下需求:基于期货历史快照行情数据合成分钟K线基于期货历史快照行情数据合成
- 最新FVCOM潮流、波浪、泥沙、水质、温盐、染色剂、粒子示踪、嵌套、背景流、自动化全流程精品课程
科研的力量
大气气象海洋水文地质土壤FVCOM水质数值模拟三维水质计算泥沙
近年来,随着计算技术的发展和对海洋、水环境问题认识的加深,数值模拟技术在海洋、水环境等科学研究中的应用越来越广泛。FVCOM因其独特的优点,成为研究海洋动力过程、污染物扩散、水质变化等问题的重要工具。作为一种基于有限体积法的数值模型,以其精确的计算方法和强大的适应性,广泛应用于水环境、潮流、温盐、波浪、泥沙等多种过程的模拟。FVCOM采用非结构化网格,可以灵活地适应复杂地形和不规则边界,这使得它在
- FVCOM模型基础理论、运行环境部署、三维水动力、温盐模拟、波浪模拟、泥沙模拟、示踪粒子模拟、染色剂交换模拟及水质数值模拟全过程
小艳加油
水资源FVCOM水环境水质波浪泥沙
近年来,随着计算技术的发展和对海洋、水环境问题认识的加深,数值模拟技术在海洋、水环境等科学研究中的应用越来越广泛。FVCOM因其独特的优点,成为研究海洋动力过程、污染物扩散、水质变化等问题的重要工具。作为一种基于有限体积法的数值模型,以其精确的计算方法和强大的适应性,广泛应用于水环境、潮流、温盐、波浪、泥沙等多种过程的模拟。FVCOM采用非结构化网格,可以灵活地适应复杂地形和不规则边界,这使得它在
- FVCOM基础理论+模型安装、运行环境部署、三维水动力、温盐模拟、波浪模拟、泥沙模拟、示踪粒子模拟、染色剂交换模拟及水质数值模拟的全过程
小新很忙
水文算法经验分享
近年来,随着计算技术的发展和对海洋、水环境问题认识的加深,数值模拟技术在海洋、水环境等科学研究中的应用越来越广泛。FVCOM因其独特的优点,成为研究海洋动力过程、污染物扩散、水质变化等问题的重要工具。作为一种基于有限体积法的数值模型,以其精确的计算方法和强大的适应性,广泛应用于水环境、潮流、温盐、波浪、泥沙等多种过程的模拟。FVCOM采用非结构化网格,可以灵活地适应复杂地形和不规则边界,这使得它在
- GIS算法基础知识点总结
熊猫_luoul
GIS算法基础算法
绪论基本计算方法:穷举法、贪心算法、分治法、动态规划法、迭代法、分支界限法(BranchandBound)穷举法:通过枚举所有可能的解来寻找最优解。优点是简单直接,缺点是计算量大,适用于小规模问题。贪心算法:每一步都选择当前最优的局部解,期望通过局部最优达到全局最优。优点是计算速度快,缺点是不一定能得到全局最优解。分治法:将问题分解为若干子问题,分别解决后再合并结果。(归并排序和快速排序)动态规划
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 液压阀设计与计算书资源简介:液压阀设计原理与计算方法全面解析
杨舒煦Rowena
液压阀设计与计算书资源简介:液压阀设计原理与计算方法全面解析【下载地址】液压阀设计与计算书资源简介《液压阀设计与计算》是一本深入探讨液压阀设计与计算的实用指南,内容系统全面,讲解清晰易懂。本书从液压阀的基本原理与分类入手,详细介绍了设计流程、计算与仿真分析方法,并针对常见问题提供了有效的解决方案。通过丰富的工程应用实例,读者能够深入理解液压阀设计的关键技术与实际应用场景。无论是从事液压阀设计的工程
- Unity基础-Mathf相关
BuHuaX
Unity基础unity游戏引擎c#全文检索
Unity基础-Mathf相关一、Mathf数学工具概述Mathf是Unity中封装好用于数学计算的工具结构体,提供了丰富的数学计算方法,特别适用于游戏开发场景。它是Unity开发中最常用的数学工具之一,能够帮助我们处理各种数学计算和插值运算。Mathf与Math的区别Math是C#中封装好用于数学计算的工具类——位于System命名空间下Mathf是Unity中封装好用于数学计算的工具结构体二者
- 贝叶斯原理:解锁不确定性的智慧钥匙(全网最详细)
富士达幸运星
贝叶斯原理人工智能机器学习
在浩瀚的统计学与概率论海洋中,贝叶斯原理如同一盏明灯,照亮了我们在不确定性中前行的道路。它不仅仅是一种计算方法,更是一种深刻的思维方式,让我们能够基于有限的信息和先验知识,对未知事件做出更加合理的预测和判断。本文将带您一窥贝叶斯原理的奥秘,探索它如何在各个领域发光发热。一、贝叶斯原理的起源与核心概念起源贝叶斯原理得名于18世纪的英国数学家托马斯·贝叶斯(ThomasBayes),尽管他本人并未直接
- 算法:时间复杂度与空间复杂度计算方法
凭君语未可
数据结构与算法算法
计算方法一、时间复杂度(TimeComplexity)1.基本概念2.计算方法3.示例1.常数时间复杂度O(1)示例:讲解:2.线性时间复杂度O(n)示例1:讲解:示例2:讲解:3.平方时间复杂度O(n²)示例1:讲解:示例2:讲解:4.对数时间复杂度O(logn)示例:讲解:5.线性对数时间复杂度O(nlogn)示例:讲解:6.指数时间复杂度O(2ⁿ)示例:讲解:二、空间复杂度(SpaceCom
- 【机器学习与数据挖掘实战 | 医疗】案例16:基于K-Means聚类的医疗保险的欺诈发现
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘kmeans聚类python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 均方根和平均值:RMS和Average
Ankie(资深技术项目经理)
无线网络技术算法频谱分析仪信号
最近学习了RMS,记录分享一下:均方根值(RootMeanSquare,RMS)也称方均根值或有效值,它的计算方法是先平方、再平均、然后开方。RMS定义及公式在数学上,均方根值可以表示为:RMS=√(1/N)×Σ(xi^2)(i从1到N)其中,xi是信号或数据集中的第i个值,N是信号或数据集的总数。实例说明假设有一个包含5个数据点的数据集:{1,2,3,4,5}。计算每个数据点的平方:{1^2,2
- 大模型多显卡多服务器并行计算方法与实践指南
非著名架构师
大模型知识文档大模型集群部署大模型多卡部署大模型并行部署
一、分布式训练概述大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式:数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本模型并行:将模型分割到不同设备,每个设备处理部分模型计算现代大模型训练通常结合这两种方式,形成混合并行策略。二、硬件环境准备1.多机多卡环境配置组件要求建议配置GPU支持CUDANVIDIAA100/H100网络高速互联Inf
- 谐波电流计算
D-海漠
其他
谐波电流的计算涉及对非线性负载引起的非正弦电流波形的分析。下面将介绍谐波电流的计算方法:傅立叶级数分解:通过傅立叶级数分解,可以将非正弦周期性电流函数展开为一个基波加上一系列频率为其整数倍的谐波分量。谐波电流的计算:对于已知的基波电流和总的电流谐波畸变率,可以使用公式I=K*I1来计算总的电流均方根值,其中K是一个与各次谐波电流有紧密关系的系数,称为谐波的校正系数。谐波含量分析:通过专用仪器测量得
- 从“数据飞轮”到质量度量:美团推荐系统的精细化质量管理实践
张彦峰ZYF
产品运营推荐算法
目录一、背景引入(一)基本背景说明(二)从推荐系统“数据飞轮”看质量建设必要性二、质量的定位和考量思考(一)对推荐系统质量的思考迭代(二)可用性计算的关注点(三)从请求的角度度量质量三、质量分计算与建设(一)质量分计算方法(二)业务层次的聚合分析(三)质量指标体系建设(四)推荐系统的数据血缘四、质量运营建设(一)质量分的系统实现(二)告警跟进流程五、总结参考文章链接或推荐阅读干货分享,感谢您的阅读
- 概念解析_瑞利商1资源文件介绍:深入理解瑞利商的计算与应用
汤健莹Bertha
概念解析_瑞利商1资源文件介绍:深入理解瑞利商的计算与应用【下载地址】概念解析_瑞利商1资源文件介绍本资源文件“概念解析_瑞利商1”深入解析了瑞利商的定义及其在数学和物理中的应用。瑞利商是一种针对Hermite矩阵和非零向量的运算,具有缩放不变性,广泛应用于优化问题和特征值分析等领域。文件详细介绍了瑞利商的计算方法及其性质,适合具备线性代数基础的读者学习。通过学习,您将掌握瑞利商的核心概念,为后续
- 【RAG排序】rag排序代码示例-高级版
weixin_37763484
大模型人工智能搜索引擎
以下是利用claude生成的排序示例,相对来说高级一些,例如使用了图排序、混合排序、mmr等技术。代码是示例代码,受输出长度限制,无法给出完整例子,在最后对输入的query、document_embedding等进行了实例展示。可以参考“使用案例解释”尝试进行修改和运行。RAG系统排序阶段的多种方法与实现1.基础排序方法1.1余弦相似度排序最基本的相似度计算方法,适用于向量检索后的重排序。impo
- lammps原子组速度的计算方法
lammps加油站_小马老师
lammps教程分子动力学lammpsovito分子动力学模拟
大家好,我是小马老师。本文介绍lammps模拟过程中原子组速度的计算方法。在lammps摩擦、冲击、压痕等模拟过程中,涉及到某个原子组的整体移动,如果要输出这个原子组的整体移动速度,可以使用vcm()函数。vcm()是lammps自带的一个函数,返回原子组质心在设定方向的速度。对应的命令格式为vcm(ID,dim)其中,ID为group-ID,dim为方向,可设置x、y或者z方向。下面是一个具体的
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc