MATLAB聚类有效性评价指标(外部)
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
更多内容,请看标签:MATLAB、聚类
前提:数据的真实标签已知!
1. 归一化互信息(Normalized Mutual information)
定义
程序
function MIhat = nmi(A, B) %NMI Normalized mutual information % A, B: 1*N; if length(A) ~= length(B) error('length( A ) must == length( B)'); end N = length(A); A_id = unique(A); K_A = length(A_id); B_id = unique(B); K_B = length(B_id); % Mutual information A_occur = double (repmat( A, K_A, 1) == repmat( A_id', 1, N )); B_occur = double (repmat( B, K_B, 1) == repmat( B_id', 1, N )); AB_occur = A_occur * B_occur'; P_A= sum(A_occur') / N; P_B = sum(B_occur') / N; P_AB = AB_occur / N; MImatrix = P_AB .* log(P_AB ./(P_A' * P_B)+eps); MI = sum(MImatrix(:)); % Entropies H_A = -sum(P_A .* log(P_A + eps),2); H_B= -sum(P_B .* log(P_B + eps),2); %Normalized Mutual information MIhat = MI / sqrt(H_A*H_B);
结果
>> A = [1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3]; >> B = [1 2 1 1 1 1 1 2 2 2 2 3 1 1 3 3 3]; >> MIhat = nmi(A, B) MIhat = 0.3646
2. Rand统计量(Rand index)
定义
程序
function [AR,RI,MI,HI]=RandIndex(c1,c2) %RANDINDEX - calculates Rand Indices to compare two partitions % ARI=RANDINDEX(c1,c2), where c1,c2 are vectors listing the % class membership, returns the "Hubert & Arabie adjusted Rand index". % [AR,RI,MI,HI]=RANDINDEX(c1,c2) returns the adjusted Rand index, % the unadjusted Rand index, "Mirkin's" index and "Hubert's" index. if nargin < 2 || min(size(c1)) > 1 || min(size(c2)) > 1 error('RandIndex: Requires two vector arguments') return end C=Contingency(c1,c2); %form contingency matrix n=sum(sum(C)); nis=sum(sum(C,2).^2); %sum of squares of sums of rows njs=sum(sum(C,1).^2); %sum of squares of sums of columns t1=nchoosek(n,2); %total number of pairs of entities t2=sum(sum(C.^2)); %sum over rows & columnns of nij^2 t3=.5*(nis+njs); %Expected index (for adjustment) nc=(n*(n^2+1)-(n+1)*nis-(n+1)*njs+2*(nis*njs)/n)/(2*(n-1)); A=t1+t2-t3; %no. agreements D= -t2+t3; %no. disagreements if t1==nc AR=0; %avoid division by zero; if k=1, define Rand = 0 else AR=(A-nc)/(t1-nc); %adjusted Rand - Hubert & Arabie 1985 end RI=A/t1; %Rand 1971 %Probability of agreement MI=D/t1; %Mirkin 1970 %p(disagreement) HI=(A-D)/t1; %Hubert 1977 %p(agree)-p(disagree) function Cont=Contingency(Mem1,Mem2) if nargin < 2 || min(size(Mem1)) > 1 || min(size(Mem2)) > 1 error('Contingency: Requires two vector arguments') return end Cont=zeros(max(Mem1),max(Mem2)); for i = 1:length(Mem1) Cont(Mem1(i),Mem2(i))=Cont(Mem1(i),Mem2(i))+1; end
程序中包含了四种聚类度量方法:Adjusted Rand index、Rand index、Mirkin index、Hubert index。
结果
>> A = [1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3]; >> B = [1 2 1 1 1 1 1 2 2 2 2 3 1 1 3 3 3]; >> [AR,RI,MI,HI]=RandIndex(A,B) AR = 0.2429 RI = 0.6765 MI = 0.3235 HI = 0.3529
3. 参考文献
(simple) Tool for estimating the number of clusters
Mutual information and Normalized Mutual information 互信息和标准化互信息
Evaluation of clustering