Tensorflow实现CIFAR-10分类问题-详解二cifar10.py

上一篇cifar1_train.py主要调用的都是cifar10.py这个文件中的函数。我们来看cifar10.py,网络结构也主要包含在这个文件当中,整个训练图包含765个操作(operations),cifar10.py图主要有三个模块组成:

  • Model inputs: inputs()和distorted_inputs()用来增加读图片的操作,分别用力读原始图片和变形后的图片。
  • Model prediction: inference()增加操作来perform inference,也就是来分类的。
  • Model training: loss()和train()增加操作计算loss,gradient,参数更新和可视化。
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse#argparse是python用于解析命令行参数和选项的标准模块
import os
import re
import sys
import tarfile

from six.moves import urllib
import tensorflow as tf

import cifar10_input

parser = argparse.ArgumentParser()#创建一个解析对象

# Basic model parameters.
parser.add_argument('--batch_size', type=int, default=128,
                    help='Number of images to process in a batch.')#添加要关注的命令行参数:1.命令行参数名,

parser.add_argument('--data_dir', type=str, default='/home/liu/NewDisk/LearnTensor/cifar10_data',#下载位置
                    help='Path to the CIFAR-10 data directory.')

parser.add_argument('--use_fp16', type=bool, default=False,
                    help='Train the model using fp16.')

FLAGS = parser.parse_args()#调用parse_args()方法进行解析

# Global constants describing the CIFAR-10 data set.
# 外部引用cifar10_input文件中的参数值
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN#训练时一个epoch中包含的样本数
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL#评估时一个epoch中包含的样本数

# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999     # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0      # Epochs after which learning rate decays.# '''衰减呈阶梯函数,控制衰减周期'''
LEARNING_RATE_DECAY_FACTOR = 0.1  # Learning rate decay factor.#学习率衰减因子
INITIAL_LEARNING_RATE = 0.1       # Initial learning rate.#初始学习率

# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'

DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'


def _activation_summary(x):#输入一个tensor x,利用x操作的名字和x的数据信息创造它的summary,用于tensorboard
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measures the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x .op.name)
  tf.summary.histogram(tensor_name + '/activations', x)#绘制分布,参数1是图标名字,参数2是要记录的变量
  tf.summary.scalar(tensor_name + '/sparsity',
                                       tf.nn.zero_fraction(x))#zero_fraction()返回0在x中的分数比例?

# 在cpu memory上创建一个名为name,大小为shape的变量。
def _variable_on_cpu(name, shape, initializer):
  """Helper to create a Variable stored on CPU memory.

  Args:
    name: name of the variable
    shape: list of ints
    initializer: initializer for Variable

  Returns:
    Variable Tensor
  """
  with tf.device('/cpu:0'):#一个 context manager,用于为新的op指定要使用的硬件
    dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
    var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)#通过所给名字创建或返回一个变量
  return var


def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = _variable_on_cpu(
      name,
      shape,
      tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))#生成的值服从具有指定平均值和标准偏差的截断的正态分布
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')#l2_loss(t):output = sum(t ** 2) / 2
    tf.add_to_collection('losses', weight_decay)
  return var


def distorted_inputs():
  """Construct distorted input for CIFAR training using the Reader ops.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.

  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')#路径整合到一起
  images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
                                                  batch_size=FLAGS.batch_size)#对输入图片变形,包含在cifar10_input.py中
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels


def inputs(eval_data):
  """Construct input for CIFAR evaluation using the Reader ops.

  Args:
    eval_data: bool, indicating if one should use the train or eval data set.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.

  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  images, labels = cifar10_input.inputs(eval_data=eval_data,
                                        data_dir=data_dir,
                                        batch_size=FLAGS.batch_size)#见cifar10_input.py文件
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels

# 搭建模型
def inference(images):
  """Build the CIFAR-10 model.

  Args:
    images: Images returned from distorted_inputs() or inputs().

  Returns:
    Logits.
  """
  # We instantiate all variables using tf.get_variable() instead of
  # tf.Variable() in order to share variables across multiple GPU training runs.
  # If we only ran this model on a single GPU, we could simplify this function
  # by replacing all instances of tf.get_variable() with tf.Variable().
  #
  # conv1
  with tf.variable_scope('conv1') as scope: # 为变量指定命名空间
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 3, 64],
                                         stddev=5e-2,
                                         wd=0.0)
    conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv1)#如上定义

  # pool1
  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                         padding='SAME', name='pool1')
  # norm1
  norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm1')

  # conv2
  with tf.variable_scope('conv2') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 64, 64],
                                         stddev=5e-2,
                                         wd=0.0)
    conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv2)

  # norm2
  norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm2')
  # pool2
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1], padding='SAME', name='pool2')

  # local3
  with tf.variable_scope('local3') as scope:
    # Move everything into depth so we can perform a single matrix multiply.
    reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
    dim = reshape.get_shape()[1].value
    weights = _variable_with_weight_decay('weights', shape=[dim, 384],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    _activation_summary(local3)

  # local4
  with tf.variable_scope('local4') as scope:
    weights = _variable_with_weight_decay('weights', shape=[384, 192],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
    local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
    _activation_summary(local4)

  # linear layer(WX + b),
  # We don't apply softmax here because
  # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
  # and performs the softmax internally for efficiency.
  with tf.variable_scope('softmax_linear') as scope:
    weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
                                          stddev=1/192.0, wd=0.0)
    biases = _variable_on_cpu('biases', [NUM_CLASSES],
                              tf.constant_initializer(0.0))
    softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
    _activation_summary(softmax_linear)

  return softmax_linear


def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
  # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64) #类型转换,使labels符合sparse_softmax_cross_entropy_with_logits输入参数格式要求
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  tf.add_to_collection('losses', cross_entropy_mean)#合中key='losses',value为cross_entropy_mean的子集中?

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')# 返回字典集合中key='losses'的子集中元素之和


def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')#创建对象
  losses = tf.get_collection('losses')
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.summary.scalar(l.op.name + ' (raw)', l)
    tf.summary.scalar(l.op.name, loss_averages.average(l))

  return loss_averages_op


def train(total_loss, global_step):
  """Train CIFAR-10 model.

  Create an optimizer and apply to all trainable variables. Add moving
  average for all trainable variables.

  Args:
    total_loss: Total loss from loss().
    global_step: Integer Variable counting the number of training steps
      processed.
  Returns:
    train_op: op for training.
  """
  # Variables that affect learning rate.
  num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
  decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)#每经过decay_step步训练,学习率衰减一次?

  # Decay the learning rate exponentially based on the number of steps.返回衰减后的学习率,即lr
  lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,#0.1
                                  global_step,
                                  decay_steps,
                                  LEARNING_RATE_DECAY_FACTOR,#0.1
                                  staircase=True)#即每经过decay_steps轮训练后,学习率乘以0.1
  tf.summary.scalar('learning_rate', lr)

  # Generate moving averages of all losses and associated summaries.
  loss_averages_op = _add_loss_summaries(total_loss)

  # Compute gradients. #tf.control_dependencies是一个context manager,控制节点执行顺序,依赖loss_averages_op才可以执行
  with tf.control_dependencies([loss_averages_op]):
    opt = tf.train.GradientDescentOptimizer(lr)#梯度下降法更新参数变量,定义这样一个对象opt
    grads = opt.compute_gradients(total_loss)#opt对象的一个函数,最小化损失来计算梯度

  # Apply gradients.#返回一步梯度更新操作 
  apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

  # Add histograms for trainable variables.
  for var in tf.trainable_variables():
    tf.summary.histogram(var.op.name, var)#生成柱状统计图,用于在tensorboard上观看数据分布

  # Add histograms for gradients.
  for grad, var in grads:
    if grad is not None:
      tf.summary.histogram(var.op.name + '/gradients', grad)

  # Track the moving averages of all trainable variables.
  variable_averages = tf.train.ExponentialMovingAverage(
      MOVING_AVERAGE_DECAY, global_step)#variable_averages是一个对象,1-moving_average_decay相当于求moving average时的更新率
  variables_averages_op = variable_averages.apply(tf.trainable_variables())#这个对象的apply()函数先创造一个变量的影子,然后对影子训练变量求一个moving average,返回这个op.训练参数的moving average要比最终训练得到的参数效果要好很多.

  with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
    train_op = tf.no_op(name='train')#在进行1.梯度更新(即对所有训练参数进行跟新);2.求参数的moving averge后,方可进行tf.no_op()操作;tf.no_op仅仅创造一个操作的占位符

  return train_op


def maybe_download_and_extract():
  """Download and extract the tarball from Alex's website."""
  dest_directory = FLAGS.data_dir
  if not os.path.exists(dest_directory):
    os.makedirs(dest_directory)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(dest_directory, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
          float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-bin')
  if not os.path.exists(extracted_dir_path):
    tarfile.open(filepath, 'r:gz').extractall(dest_directory)

你可能感兴趣的:(Tensorflow)