CVPR/AAAI/ECCV顶会论文/代码

一,CVPR/AAAI/ECCV顶会论文/代码

本页面是自己学习时候,觉得有用的一些文章,暂时MARK一下,用得着的地方就再细看。目标检测、 图像分割、人脸识别、 目标跟踪、 三维点云、 图像处理、 图像分类、 姿态估计、 视频分析、 OCR
、GAN、小样本&零样本、 弱监督&无监督、神经网络、 模型压缩、NAS、 视觉常识

1.cvpr20200

1. 压缩方面

  • Deep compression(song han):权重共享,梯度更新
    论文解读:https://blog.csdn.net/weixin_36474809/article/details/80643784#%E6%84%8F%E4%B9%89

  • PU-Accelerated Mobile Multi-view Style Transfer
    论文地址:https://arxiv.org/abs/2003.00706

  • GPU-Accelerated Mobile Multi-view Style Transfer
    论文地址:https://arxiv.org/abs/2003.00706

  • Filter Grafting for Deep Neural Network
    论文地址:https://arxiv.org/pdf/2001.05868.pdf
    论文解读:https://blog.csdn.net/m0_37400316/article/details/105298538

  • HRank: Filter Pruning using High-Rank Feature Map
    github:https://github.com/lmbxmu/HRank
    paper:https://128.84.21.199/pdf/2002.10179.pdf
    论文讲解:https://blog.csdn.net/m0_37400316/article/details/105488195

  • Out-of-the-box Channel Pruned Networks(基于RL)
    论文地址:https://arxiv.org/pdf/2004.14584.pdf

  • Training with Quantization Noise for Extreme Model Compression(量化)
    论文地址: https://arxiv.org/pdf/2004.07320.pdf
    论文分析:https://blog.csdn.net/m0_37400316/article/details/105990601

2. NAS方面

  • A Semi-Supervised Assessor of Neural Architectures

  • CARS: Contunuous Evolution for Efficient Neural Architecture Search
    https://arxiv.org/pdf/1909.04977.pdf
    开源代码:https://github.com/huawei-noah/CARS
    讲解1:https://mp.weixin.qq.com/s/EW09lqADAoyIlvuyuhLY1w

  • Rethinking Performance Estimation in Neural Architecture Search(NAS)
    由于block wise neural architecture search中真正消耗时间的是performance estimation部分,本文针对 block wise的NAS找到了最优参数,速度更快,且相关度更高
    论文:
    代码: https://github.com/zhengxiawu/rethinking_performance_estimation_in_NAS

  • NAS 目标检测 Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
    github地址:https://www.ctolib.com/https://github.com/ggjy/HitDet.pytorch
    讲解地址:https://blog.csdn.net/weixin_43383972/article/details/105646189
    备注:git代码未提供搜索过程

  • NAS 目标检测 NAS-FCOS: Fast Neural Architecture Search for Object Detection
    文章地址:https://arxiv.org/pdf/1906.04423.pdf

3. 目标检测
排行榜:目标检测排行榜

  • Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
    论文地址:https://arxiv.org/abs/1912.02424
    代码:https://github.com/sfzhang15/ATSS

  • Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
    论文地址:https://arxiv.org/abs/1908.01998、

  • CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection
    github:https://github.com/KiveeDong/CentripetalNet

4. 人脸识别

  • Towards Universal Representation Learning for Deep Face Recognition
    论文地址:https://arxiv.org/abs/2002.11841
    论文分析:https://blog.csdn.net/m0_37400316/article/details/104900025
  • Suppressing Uncertainties for Large-Scale Facial Expression Recognition
    论文地址:https://arxiv.org/abs/2002.10392
    代码:https://github.com/kaiwang960112/Self-Cure-Network
  • Face X-ray for More General Face Forgery Detection
    论文地址:https://arxiv.org/pdf/1912.13458.pdf
  • 基于元学习的泛化人脸识别(CVPR2020 oral)
    Learning Meta Face Recognition in Unseen Domains
    论文地址https://arxiv.org/pdf/2003.07733.pdf

5. 无监督学习

  • A Simple Framework for Contrastive Learning of Visual Representation()
    论文地址:https://arxiv.org/pdf/2002.05709.pdf
    代码:https://github.com/google-research/simclr
  • Kaiming He的Momentum Contrast for Unsupervised?何凯明的无监督方面2篇
    a.Momentum Contrast for Unsupervised Visual Representation Learning
    代码地址: https://github.com/facebookresearch/moco
    b.Improved Baselines with Momentum Contrastive Learning

6. OCR识别

  • ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network
    论文地址:https://arxiv.org/pdf/2002.10200.pdf
    代码地址:https://github.com/aim-uofa/AdelaiDet

7. 图像和谐化

  • “DoveNet: Deep Image Harmonization via Domain Verification”
    文章地址:https://arxiv.org/pdf/1911.13239.pdf
    代码地址:https://github.com/bcmi

8.迁移

  • Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Situations(CVPR oral)
    论文地址:https://arxiv.org/abs/2003.12237
    代码地址:https://github.com/cuishuhao/BNM

9.视觉常识

  • Visual Commonsense R-CN
    论文地址:https://arxiv.org/pdf/2002.12204.pdf
    代码地址:

10.Gradient 优化

  • Gradient Centralization: A New Optimization Technique for Deep Neural Networks
    论文地址:https://arxiv.org/pdf/2004.01461.pdf
    代码地址:https://github.com/Yonghongwei/Gradient-Centralization
    论文解读:https://blog.csdn.net/m0_37400316/article/details/105955193

Reference

  • http://bbs.cvmart.net/articles/1538#15

  • https://github.com/Sophia-11/Awesome-CVPR-Paper

  • https://blog.csdn.net/mrjkzhangma/article/details/104579774

  • cvpr论文合集https://zhuanlan.zhihu.com/p/112337176

  • https://zhuanlan.zhihu.com/p/121507249

  • https://github.com/extreme-assistant/CVPR2020-Paper-Code-Interpretation/blob/master/CVPR2020.md

  • https://www.ctolib.com/amp/amusi-CVPR2020-Code.html

  • https://std.xmu.edu.cn/2020/0303/c4739a395897/page.htm

  • 检测类代码

  • 检测 https://blog.csdn.net/weixin_40520963/article/details/105224141

  • 各类Net代码实现https://github.com/CeLuigi/models-comparison.pytorch

  • 物体检测系列代码https://github.com/hoya012/deep_learning_object_detection

  • 检测类论文系列https://github.com/amusi/awesome-object-detection

你可能感兴趣的:(论文阅读)