08. 训练神经网络3 -- 优化算法

前面一部分主要讲了神经网络在前向传播过程中对数据的处理,包括去均值预处理, 权重初始化, 在线性输出结果和激活函数之间批量归一化BN,以及进入下一层layer之前的随机失活.

那么这一部分将介绍在反向传播过程中对梯度下降的处理,也就是几种优化算法.

真的很佩服这些人…一个梯度下降,你之前可能想的就是 w=αdw w − = α d w 就好了,但研究者们也能大做文章,厉害厉害!!

  • 随机梯度下降(sgd)
  • momentum
  • RMSprop
  • Adam
  • 学习率衰减 learning_rate decay
  • 局部最优 local optimal

1. 随机梯度下降

其实就是mini-batch,每次iteration不是处理全部数据集,而是从全部数据集中随机选取batch_size个样本量进行前向和反向传播,并完成一次梯度下降.
2018-02-05%2009-38-57%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE.png

python代码:

def sgd(w, dw, config=None):
    """
    Performs vanilla stochastic gradient descent.

    config format:
    - learning_rate: Scalar learning rate.
    """
    if config is None: config = {}
    config.setdefault('learning_rate', 1e-2)  #{'learning_rate':1e-2}

    w -= config['learning_rate'] * dw    #随机梯度下降~
    return w, config

2. 指数加权平均 Exponentially weighted averages

统计学中又称移动加权平均.

vt=βvt1+(1β)θt v t = β v t − 1 + ( 1 − β ) θ t

2018-02-05%2010-17-56%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE.png
θ,v θ 是 实 际 温 度 , v 是 统 计 规 律 的 温 度 .

vt=βvt1+(1β)θt v t = β v t − 1 + ( 1 − β ) θ t

假设 β=0.9 β = 0.9

2018-02-05%2010-27-11%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE.png

得到如图所示的指数加权平均:
2018-02-05%2010-27-58%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE.png

显然 β β 越大时,之前第n填填所占的权重 (0.1βn) ( 0.1 β n ) 就越大,统计的天数n就越多. 当n=10, β=0.9 β = 0.9 时, 0.910<1e 0.9 10 < 1 e 这个时候权重太小就不考虑了.

3. 指数加权平均的偏差修正 bias correction

主要是针对估计的初期部分.
vt=βvt1+(1β)θt1β v t = β v t − 1 + ( 1 − β ) θ t 1 − β

4. 动量梯度下降 Gradient descent with momentum

原理就是:纵向摆动加权平均为0,横向一直是沿着loss减小的方向,因而会加速这个方向的梯度.

vdw=βvdw+(1β)dW v d w = β v d w + ( 1 − β ) d W

vdb=βvdb+(1β)db v d b = β v d b + ( 1 − β ) d b

W=Wαvdw,b=bαvdw W = W − α v d w , b = b − α v d w

Hyperparameters: α,β α , β . β,α β 是 指 数 加 权 平 均 系 数 , α 是 学 习 率

python 代码:

def sgd_momentum(w, dw, config=None):
    """
    Performs stochastic gradient descent with momentum.

    config format:
    - learning_rate: Scalar learning rate.
    - momentum: Scalar between 0 and 1 giving the momentum value.   ## 指数加权平均系数
      Setting momentum = 0 reduces to sgd.
    - velocity: A numpy array of the same shape as w and dw used to store a
      moving average of the gradients.             ## 经过加权平均后的权重,和W的shape是一样的
    """
    if config is None: config = {}
    config.setdefault('learning_rate', 1e-2)
    config.setdefault('momentum', 0.9)
    v = config.get('velocity', np.zeros_like(w)) #初始化为0
    next_w = None
    ## Nesterov Accelerated gradient
    v = config['momentum'] * v - config['learning']*dw
    next_w =  w + v
    ## Ng 讲解的似乎不太一样
    # v = config['momentum'] * v -(1 - config['momentum'])*dw
    # next_w = w - config['learning_rate'] * v
    config['velocity'] = v
    return next_w, config

5. RMSprop root mean square prop算法

2018-02-05%2015-11-11%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE.png

Sdw=0,Sdb=0 S d w = 0 , S d b = 0

Sdw=β2Sdw+(1β2)(dW)2 S d w = β 2 S d w + ( 1 − β 2 ) ( d W ) 2

Sdb=β2Sdb+(1β2)(db)2 S d b = β 2 S d b + ( 1 − β 2 ) ( d b ) 2

W=WαdwSdw+ϵ,b=bαdbSdb+ϵ W = W − α d w S d w + ϵ , b = b − α d b S d b + ϵ

RMSprop原理: 假设纵向需要消除摆动的是参数b,当摆动很大,即 |db| | d b | 很大. 那么通过指数加权平均后,与momentum不同的是的 S2db S d b 2 显然是一个比较大的数,那么 dbSdb+ϵ d b S d b + ϵ 就相对减小,在纵向的梯度变化也会较小.

横向需要加速的是参数w,那么当dw很小的情况下,反过来的道理~~

当然在高维空间中,纵向需要消除的可能是W1,W3,W10…横向需要加速的可能是W2,W5…

def rmsprop(x, dx, config=None):
    """
    Uses the RMSProp update rule, which uses a moving average of squared
    gradient values to set adaptive per-parameter learning rates.

    config format:
    - learning_rate: Scalar learning rate.
    - decay_rate: Scalar between 0 and 1 giving the decay rate for the squared
      gradient cache.
    - epsilon: Small scalar used for smoothing to avoid dividing by zero.
    - cache: Moving average of second moments of gradients.
    """
    if config is None: config = {}
    config.setdefault('learning_rate', 1e-2)    ## 学习率
    config.setdefault('decay_rate', 0.99)       ## 指数加权平均衰减率
    config.setdefault('epsilon', 1e-8)
    config.setdefault('cache', np.zeros_like(x))
    next_x = None
    config['cache'] = config['decay_rate']*config['cache']+(1-config['decay_rate'])*(dx**2)
    next_x = x - config['learning_rate']*dx/(np.sqrt(config['cache'])+config['epsilon'])

    return next_x, config

6. Adam optimization algorithm

Adaptive Momentum Estimation

2018-02-05%2015-34-35%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE.png

Ng的公式难得写的这么公整,我就不敲了…只是中间的yhat什么鬼…
Adam的原理也很简单:将momentum和RMSprop进行了结合,并且两个都用到了偏差修正.

超参数的设置:

α α needs to be tune

β1:0.9 β 1 : 0.9 这个dw的指数加权平均的底数

β2:0.99 β 2 : 0.99 这个是 (dw2) ( d w 2 ) 的指数加权平均的底数

ϵ:108 ϵ : 10 − 8

python 代码:

def adam(x, dx, config=None):
    """
    Uses the Adam update rule, which incorporates moving averages of both the
    gradient and its square and a bias correction term.

    config format:
    - learning_rate: Scalar learning rate.
    - beta1: Decay rate for moving average of first moment of gradient.   ## dw的指数加权平均衰减率
    - beta2: Decay rate for moving average of second moment of gradient.  ## dw^2的指数加权平均衰减率
    - epsilon: Small scalar used for smoothing to avoid dividing by zero.
    - m: Moving average of gradient.   ## dw的移动平均值
    - v: Moving average of squared gradient.   ## dw^2的移动平均值
    - t: Iteration number.
    """
    if config is None: config = {}
    config.setdefault('learning_rate', 1e-3)
    config.setdefault('beta1', 0.9)
    config.setdefault('beta2', 0.999)
    config.setdefault('epsilon', 1e-8)
    config.setdefault('m', np.zeros_like(x))
    config.setdefault('v', np.zeros_like(x))
    config.setdefault('t', 1)      ## 但是并没有传入这个参数啊..默认一直为1?
    next_x = None
    config['m'] = config['beta1']*config['m']+(1-config['beta1'])*dx
    config['v'] = config['beta2']*config['v']+(1-config['beta2'])*(dx**2)
    ##偏差修正
    m_correct = config['m']/(1-config['beta1']**config['t'])
    v_correct = config['v']/(1-config['beta2']**config['t'])
    next_x = x - config['learning_rate']*m_correct/(np.sqrt(v_correct)+config['epsilon'])
    return next_x, config

7. 学习率衰减 learning_rate decay

1)指数衰减

α=0.95epoch_numα0 α = 0.95 e p o c h _ n u m ∗ α 0

2)

α=11+decay_rateepoch_numα0 α = 1 1 + d e c a y _ r a t e ∗ e p o c h _ n u m ∗ α 0

8. local optimal

2018-02-05%2015-59-04%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE.png
画风soooo cute!!!全世界画人儿都是一样的啊hahahhhhh

鞍点就是梯度也为0,但却不是最优解.

import numpy as np
a = np.array([1,2])
a**2
array([1, 4])

你可能感兴趣的:(cs231n)