深度学习——GAN的基础理解

一.GAN的基本要素

         1.真实数据集,初始化虚假数据集(噪音)

         2.生成器,鉴别器:

                 生成器

                          输入:原始数据的维数(一条数据)

                          输出:原始数据的维数(一条数据)

                                     除了最后一层都要经sigmoid()

                 鉴别器

                          输入:原始数据的维数(一个batch的数据)

                          输出:一维(以判别结果的真假)

                                     经sigmoid,在(0,1)范围(切确地说输入层,隐藏层,输出层都要经过)

          3.训练环(每一次epoch):

                      每一次eopch里面,D和G都要训练,并且各自训练多次。(在代码中见到的情况是先D后G)

                  生成器训练周期:

                          真实数据训练:

                                          (1)判别器出来的结果向“1”靠近

                                          (2)反向传播

                          生成器产生数据训练:

                                           (1)冻结生成器并产生数据

                                           (2)判别器出来的结果向“0”靠近

                                           (3)反向传播

                  鉴别器训练周期:

                                 (1)不冻结生成器并产生数据(喂如D前转置了以下)

                                 (2)判别器出来的结果向“1”靠近

                                 (3)反向传播

 

二.GAN的损失函数

                \large min_Gmax_D E _r_e_a_l[logD(x)]+E_f_a_k_e[log(1-D(z))]

解释:

            对于判别器来说:损失函数的值越大越好

                                         包括式子的两项                                        

            对于生成器来说:损失函数的值越小越好

                                         只包括式子的后一项

三.公式和代码的转换技巧

           1.损失函数的max,min,“+”,“-”等等:基本只体现在,代码的criterion()函数里。在代码里面的思路很简单:criterion()就是为了度量你想要的真实训练出来的差距;反向传播的过程就是改变网络的参数,使criterion()的值越来越小(即网络训练出来的会更加靠近你想要的)。

            PS:所以看文章的时候要小心,损失函数等max,还是min(老师和师兄都落坑了啊)。

           2.网络的结构框图:基本只体现在代码的训练周期里。

           3.看代码,运行代码真的是和刷题一样重要!!!论文摘要就像教科书里的重点,论文文本基本是玄学。只看课本文字不刷题,想想后果就知道,基本学不会本质的东西并且还浪费时间。

 

四.文章所辅助的代码

#!/usr/bin/env python

# Generative Adversarial Networks (GAN) example in PyTorch. Tested with PyTorch 0.4.1, Python 3.6.7 (Nov 2018)
# See related blog post at https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f#.sch4xgsa9
####################################################导入包################################################################
import numpy as np
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable

matplotlib_is_available = True
try:
  from matplotlib import pyplot as plt
except ImportError:
  print("Will skip plotting; matplotlib is not available.")
  matplotlib_is_available = False
####################################################导入包################################################################

####################################################获取数据################################################################
# 使用第二张GPU卡
os.environ["CUDA_VISIBLE_DEVICES"] = "1"


# Data params
data_mean = 4
data_stddev = 1.25

# ### Uncomment only one of these to define what data is actually sent to the Discriminator
#(name, preprocess, d_input_func) = ("Raw data", lambda data: data, lambda x: x)
#(name, preprocess, d_input_func) = ("Data and variances", lambda data: decorate_with_diffs(data, 2.0), lambda x: x * 2)
#(name, preprocess, d_input_func) = ("Data and diffs", lambda data: decorate_with_diffs(data, 1.0), lambda x: x * 2)
(name, preprocess, d_input_func) = ("Only 4 moments", lambda data: get_moments(data), lambda x: 4)

print("Using data [%s]" % (name))

# ##### DATA: Target data and generator input data

def get_distribution_sampler(mu, sigma):
    return lambda n: torch.Tensor(np.random.normal(mu, sigma, (1, n)))  # Gaussian

def get_generator_input_sampler():
    return lambda m, n: torch.rand(m, n)  # Uniform-dist data into generator, _NOT_ Gaussian

####################################################获取数据################################################################

# ##### MODELS: Generator model and discriminator model

####################################################生成器和判别器################################################################
class Generator(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, f):
        super(Generator, self).__init__()
        self.map1 = nn.Linear(input_size, hidden_size)
        self.map2 = nn.Linear(hidden_size, hidden_size)
        self.map3 = nn.Linear(hidden_size, output_size)
        self.f = f

    def forward(self, x):
        x = self.map1(x)
        x = self.f(x)
        x = self.map2(x)
        x = self.f(x)
        x = self.map3(x)
        return x

class Discriminator(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, f):
        super(Discriminator, self).__init__()
        self.map1 = nn.Linear(input_size, hidden_size)
        self.map2 = nn.Linear(hidden_size, hidden_size)
        self.map3 = nn.Linear(hidden_size, output_size)
        self.f = f

    def forward(self, x):
        x = self.f(self.map1(x))
        x = self.f(self.map2(x))
        return self.f(self.map3(x))
    ####################################################生成器和判别器################################################################

def extract(v):
    return v.data.storage().tolist()

def stats(d):
    return [np.mean(d), np.std(d)]

def get_moments(d):
    # Return the first 4 moments of the data provided
    mean = torch.mean(d)  #生成的高斯分布求均值
    diffs = d - mean
    var = torch.mean(torch.pow(diffs, 2.0))
    std = torch.pow(var, 0.5)  #生成的高斯分布求标准差元素与
    zscores = diffs / std
    skews = torch.mean(torch.pow(zscores, 3.0))
    kurtoses = torch.mean(torch.pow(zscores, 4.0)) - 3.0  # excess kurtosis, should be 0 for Gaussian
    final = torch.cat((mean.reshape(1,), std.reshape(1,), skews.reshape(1,), kurtoses.reshape(1,)))  #一个向量,有四个元素,如代码
    return final

def decorate_with_diffs(data, exponent, remove_raw_data=False):
    mean = torch.mean(data.data, 1, keepdim=True)
    mean_broadcast = torch.mul(torch.ones(data.size()), mean.tolist()[0][0])
    diffs = torch.pow(data - Variable(mean_broadcast), exponent)
    if remove_raw_data:
        return torch.cat([diffs], 1)
    else:
        return torch.cat([data, diffs], 1)

def train():
    # Model parameters
    g_input_size = 1      # Random noise dimension coming into generator, per output vector
    g_hidden_size = 5     # Generator complexity
    g_output_size = 1     # Size of generated output vector
    d_input_size = 500    # Minibatch size - cardinality of distributions
    d_hidden_size = 10    # Discriminator complexity
    d_output_size = 1     # Single dimension for 'real' vs. 'fake' classification
    minibatch_size = d_input_size

    d_learning_rate = 1e-3
    g_learning_rate = 1e-3
    sgd_momentum = 0.9

    num_epochs = 5000
    print_interval = 100
    d_steps = 20
    g_steps = 20

    dfe, dre, ge = 0, 0, 0
    d_real_data, d_fake_data, g_fake_data = None, None, None

    discriminator_activation_function = torch.sigmoid
    generator_activation_function = torch.tanh

    d_sampler = get_distribution_sampler(data_mean, data_stddev)
    gi_sampler = get_generator_input_sampler()
    G = Generator(input_size=g_input_size,
                  hidden_size=g_hidden_size,
                  output_size=g_output_size,
                  f=generator_activation_function)
    D = Discriminator(input_size=d_input_func(d_input_size),
                      hidden_size=d_hidden_size,
                      output_size=d_output_size,
                      f=discriminator_activation_function)
    criterion = nn.BCELoss()  # Binary cross entropy: http://pytorch.org/docs/nn.html#bceloss
    d_optimizer = optim.SGD(D.parameters(), lr=d_learning_rate, momentum=sgd_momentum)
    g_optimizer = optim.SGD(G.parameters(), lr=g_learning_rate, momentum=sgd_momentum)

    ####################################################训练################################################################
    for epoch in range(num_epochs):
        for d_index in range(d_steps):  #在每一个训练期里面,D训练20次
            # 1. Train D on real+fake
            D.zero_grad()  #将梯度都置为0,注意是梯度不是网络参数

            #  1A: Train D on real
            d_real_data = Variable(d_sampler(d_input_size))  #产生高斯分布的数据,是随机散乱排列的
            d_real_decision = D(preprocess(d_real_data))  #这里直接调用forward()??
            d_real_error = criterion(d_real_decision, Variable(torch.ones([1,1])))  # ones = true
            d_real_error.backward() # compute/store gradients, but don't change params

            #  1B: Train D on fake
            d_gen_input = Variable(gi_sampler(minibatch_size, g_input_size))
            d_fake_data = G(d_gen_input).detach()  # detach to avoid training G on these labels
            d_fake_decision = D(preprocess(d_fake_data.t()))
            d_fake_error = criterion(d_fake_decision, Variable(torch.zeros([1,1])))  # zeros = fake
            d_fake_error.backward()
            d_optimizer.step()     # Only optimizes D's parameters; changes based on stored gradients from backward()

            dre, dfe = extract(d_real_error)[0], extract(d_fake_error)[0]  #每一次的损失

        for g_index in range(g_steps):  #在每一个训练器里面G训练20次
            # 2. Train G on D's response (but DO NOT train D on these labels)
            G.zero_grad()

            gen_input = Variable(gi_sampler(minibatch_size, g_input_size))  #随机产生(0,1)间的数,注意不是高斯分布
            g_fake_data = G(gen_input)  #不明感觉输出维度不对
            dg_fake_decision = D(preprocess(g_fake_data.t()))
            g_error = criterion(dg_fake_decision, Variable(torch.ones([1,1])))  # Train G to pretend it's genuine

            g_error.backward()
            g_optimizer.step()  # Only optimizes G's parameters
            ge = extract(g_error)[0]

        if epoch % print_interval == 0:
            print("Epoch %s: D (%s real_err, %s fake_err) G (%s err); Real Dist (%s),  Fake Dist (%s) " %
                  (epoch, dre, dfe, ge, stats(extract(d_real_data)), stats(extract(d_fake_data))))
    ####################################################训练################################################################

    ####################################################画图################################################################
    if matplotlib_is_available:
        print("Plotting the generated distribution...")
        values = extract(g_fake_data)  #G产生出来的数据
        print(" Values: %s" % (str(values)))
        plt.hist(values, bins=50)  #画直方图,参数一:输入数据,参数二:条的个数
        plt.xlabel('Value')
        plt.ylabel('Count')
        plt.title('Histogram of Generated Distribution')
        plt.grid(True)  #生成网格
        plt.show()
####################################################画图################################################################

train()

结果:

代码输出图像近似接近于高斯分布。

你可能感兴趣的:(深度学习)