- LINUX 平台最快子网路由转发,内核使能选项配置
liulilittle
IPExtensionlinux运维服务器
阅读本文之间,可线性参考以下文献。Linux命令行配置为单臂旁路由。_linux单臂路由-CSDN博客Linux软路由命令行配置(参考)_linux软路由-CSDN博客VGW在Windows平台上局域网就绪的旁路由器程序_windows旁路由-CSDN博客本文介绍LINUX通用平台最快子网路由转发方案,不需要任何第三方程式,不需要三方限制硬件采用的DPDK平台做出来的转发,单纯采用内核直接转发。配
- 振动分析-7-轴承数据库之时频域连续小波变换CWT
皮皮冰燃
振动分析振动分析
Python-凯斯西储大学(CWRU)轴承数据解读与分类处理滚动轴承发生故障时,其振动信号往往具有非线性、非平稳性特点。相比传统的时域和频域分析方法,在处理非线性、非平稳信号时,时频分析方法更加有效。时频分析方法采用时域和频域的二维联合表示,可以实现非平稳信号局部特性的精确描述,具有时域和频域等传统方法无法比拟的优势,已经被广泛地应用于机械故障诊断领域。常用的时频分析方法有:(1)傅里叶变换(Fo
- 一种高胜率的交易系统:均值回归交易策略
比特币web3程序员
引言在量化交易领域,均值回归交易策略是一种基于价格将回归到平均值这一假设的交易方法。这种策略的核心思想是,当资产的价格偏离其长期均值或历史平均水平太远时,存在一种趋势,即价格将回归到其均值或平均水平。均值回归的方程定义在量化交易和统计学中,均值回归方程可以帮助投资者识别价格偏离均值的机会,并据此制定交易策略。通过识别价格过度偏离均值的情况,来预测价格可能的回调方向,从而捕捉交易机会。这种策略
- 简要说一下关于实现整个深度学习项目的流程
懒大王12138
机器学习深度学习神经网络人工智能算法
我们以识别生物信号为例子,其他类似与图像、文本和目标/故障检测的同样适用1.信号预处理;首先要将得到的生物信号进去噪音去除,另外所有的生物信号由于采样时间不同可能长度并不一样,这时候你需要统一长度。2.特征工程;你需要对所有的经过预处理并且将要输入神经网络的信号提取特征,比如信号的频谱图、时间-频率图或者是一些非线性的动力学特征,比如相空间这些。最重要的是提取的特征数据形状必须一致。3.搭建深度学
- 题海拾贝:P2085 最小函数值
<但凡.
题海拾贝算法c++数据结构
Hello大家好!很高兴我们又见面啦!给生活添点passion,开始今天的编程之路!我的博客:#includetypedeflonglongLL;usingnamespacestd;constintN=1e4+10;LLA[N],B[N],C[N];structnode{LLnum;//值LLi;//第i个方程式LLj;//代入的值//重载运算符写结构体里面不能typedefbooloperato
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- 几种常见的求特殊方程正整数解的方法和示例
max500600
算法算法
以下是几种常见的求特殊方程正整数解的方法和示例:一元一次方程例题:已知关于(x)的方程(mx+3=9-x)((m)为不等于(1)的整数)的解是正整数,求该方程的正整数解,并求相应(m)的值.求解步骤:首先解方程(mx+3=9-x),移项可得(mx+x=9-3),即((m+1)x=6),解得(x=\frac{6}{m+1})。因为方程解是正整数,所以(m+1)是(6)的正因数,(6)的正因数有(1)
- AcWing算法基础课笔记——高斯消元
SharkWeek.
AcWing算法笔记数论
高斯消元用来求解方程组a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…an1x1+an2x2+⋯+annxn=bna_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x
- 【YOLO日志文件】读取和可视化events.out.tfevents文件
我是瓦力
其他YOLO目标检测人工智能计算机视觉pytorch视觉检测
文章目录前言方法读取数据可视化数据总结前言目的:读取和可视化events.out.tfevents文件问题:yolo官方程序默认出的图样式和数据不够详细,如何提取出相应数据,方便自己查看详细和处理数据方法:通过tensorboardX和tensorboard库读取数据,再通过matplotlib进行可视化例如yolo结果数据都是固定样式图,不能方便查看其中每个点的具体数值。方法读取数据为了读取.t
- 2025数学建模美赛——神经网络预测模型详解
前程算法屋
数学建模教程数学建模神经网络人工智能
2025数学建模美赛——神经网络预测模型详解一、神经网络预测模型基础1.1、神经网络概述神经网络是一种模拟人脑神经元工作方式的计算模型,它由大量的节点(或称为神经元)组成,这些节点通过连接权重相互连接。这种模型能够进行复杂的非线性数据处理,通过调整连接权重,可以从数据中学习到复杂的模式和关系。神经网络的基本结构包括输入层、隐藏层和输出层。输入层接收外部数据,隐藏层对数据进行处理,输出层则给出模型的
- CNN+LSTM+AM研究方向初尝试
qzhqbb
勇闯学术圈机器学习cnnlstm人工智能笔记
CNN+LSTM+AM研究方向初尝试简单介绍CNNCNN的基本结构卷积层(ConvolutionalLayer):该层通过卷积操作提取输入数据的特征。卷积操作使用多个卷积核(滤波器)对输入图像进行局部感知,从而识别出边缘、纹理等基本特征。卷积层的输出称为特征图(FeatureMap)。激活层(ActivationLayer):常用的激活函数包括ReLU(线性整流单元),用于引入非线性,使网络能够学
- 基于matlab汽车定速巡航仿真,毕业设计论文汽车定速巡航控制系统的设计.doc
weixin_40005437
汽车定速巡航控制系统的设计摘要:随着汽车工业和公路运输业的发展,汽车会越来越普及,人们将需要更加舒适、简便和安全的交通工具。汽车巡航控制系统是一种辅助驾驶系统,它不但可以减轻驾驶员的负担,还可以提高驾车的舒适性。汽车巡航控制系统具有非线性、时变不确定性,并受到外界扰动、复杂的运行工况等影响,采用传统PID控制很难取得满意的效果,本文介绍了一种基于模糊PID控制算法的汽车巡航控制系统。本文首先阐述了
- 基于RBF神经网络的在线学习算法
fanxbl957
人工智能理论与实践神经网络学习算法
基于RBF神经网络的在线学习算法一、引言随着信息技术的飞速发展,数据的产生速度日益加快,传统的批量学习算法在处理大规模、实时更新的数据时面临着诸多挑战。在线学习算法作为一种可以实时更新模型的学习方式,逐渐受到广泛关注。RBF(径向基函数)神经网络作为一种强大的神经网络模型,以其良好的函数逼近能力和非线性处理能力,为在线学习提供了一种有效的工具。本文将深入探讨基于RBF神经网络的在线学习算法,包括其
- SVC函数介绍
浊酒南街
#机器学习算法人工智能
目录前言函数介绍示例前言SVC(SupportVectorClassification)是支持向量机(SVM)的一种实现,主要用于分类问题。支持向量机是一种监督学习算法,其基本原理是找到一个最优的超平面来将不同类别的数据分开。SVC在小样本和高维空间中表现良好,且能够处理非线性分类问题。函数介绍SVC(C=1.0,kernel=‘rbf’,degree=3,gamma=‘auto’,coef0=0
- MATLAB符号函数绘制各种函数图像,ezplot()函数 ezplot3()函数
Python数据分析与机器学习
可视化函数图像matlab画图matlab开发语言信息可视化
我们学习常遇见的函数种类有显函数,隐函数,参数方程三种,对于隐函数绘制图像比较麻烦,给大家介绍一种简单实用的一中画函数的方法。函数介绍二维曲线ezplot()函数ezplot()函数用于绘制显函数,隐函数,参数方程二维图像,函数格式ezplot(f)直接绘制图像ezplot(f,[min,max])指定函数x的值域范围三维曲线ezplot3()函数ezplot3()函数用于绘制显函数,隐函数,参数
- 题目:解码方法(来自leetcode)动态规划----斐波那契模型
清风逸梦
leetcode动态规划算法
解码方法题目动态规划(5步走)状态表示状态转移方程初始化填表顺序返回值代码题目链接题目动态规划(5步走)状态表示dp[i]表示为从下标i之前的的解码数。状态转移方程以i位置为终点,下标为i的位置有两种方式:第一种就是单独解码,第二种就是与前面的一位数合并解码。单独解码有分两种情况:第一种是:当s[i]在[1,9]时可以单独解码,就相当于在dp[i-1]种情况后接上一个单独解码,所以dp[i]=dp
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 动态规划,蒙特卡洛,TD,Qlearing,Sars,DQN,REINFORCE算法对比
青椒大仙KI11
动态规划算法机器学习深度学习
动态规划(DynamicProgramming,DP)通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划的步骤识别子问题:定义问题的递归解法,识别状态和选择。确定DP数组:确定存储子问题解的数据结构,通常是数组或矩阵。确定状态转移方程:找出状态之间的关系,即状态转移方程。边界条件:确定DP数组的初始值或边界条件。填表:按照顺序填入DP表,通常是从最小的子问题开始。构造最优解:根据
- 东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法
天空的蓝耀
python
常微分方程初值问题数值解6.1题目编制RK4方法的通用程序;编制AB4方法的通用程序(由RK4提供初值);编制AB4-AM4预测校正方法通用程序(由RK4提供初值);编制带改进的AB4-AM4预测校正方法通用程序(由RK4提供初值);对于初值问题{y′=−x2y2,0≤x≤1.5,y(0)=3\begin{cases}y'=-x^{2}y^{2},&0\leqx\leq1.5,\\y(0)=3&\
- 小白入门MATLAB学习笔记
小mushroom
matlab学习笔记
绘图:使用MATLAB绘制三叶玫瑰线公式:玫瑰线的极坐标方程为:ρ=a*sin(nθ),ρ=a*cos(nθ)用直角坐标方程表示为:x=a*sin(nθ)*cos(θ),y=a*sin(nθ)*sin(θ)其中n为玫瑰线的叶数,我们绘制三叶玫瑰线,因而公式中取n=3代码:t=-2*pi:0.01:2*pi;x=sin(3*t).*cos(t);y=2*sin(3*t).*sin(t);z=3*si
- C语言程序设计基础(例题(请看注释)03
24白菜头
c语言开发语言
一,基础篇案例1—1《点到直线的距离》已知直线L的方程是Ax+By+C=0,点P的坐标是(x,y),求点P到直线L的距离。点到直线的距离公式为:要求先输入A,B,C三个参数,确定直线L;然后再输入x和y,确定点P;最后根据点到直线的距离公式,计算点到直线的距离。#include#includeintmain(){ doubleA,B,C;//直线的参数 doublex,y;//点坐标
- 产生式系统实验头歌实验测试不通过解决(人工智能)
兜里没有一毛钱
人工智能pythonnumpy数据分析人工智能机器学习
任务描述本关任务:编写一个使用产生式方法识别动物的系统。编程要求根据提示,在右侧编辑器补充代码,完成产生式系统——动物识别系统的操作,最后达到输入动物特征,输出动物类型的结果。特别说明在这个实验中,存在一个实验现象,就是你的自测运行输出结果与实验要求输出结果一模一样也不能通过,为什么呢?答:这个不知道算不算是头歌实验平台存在bug,一般我们在编写程序代码中,要求格式都是英文格式,但是在这个实验测试
- Python数据分析与程序设计-番外:在vscode中使用Jupyter Notebook
想当糕手
python数据分析vscodejupyter
前言在系列文章的第二篇中,我们介绍了使用“if__name__=="__main__":”来模拟c语言中的main函数+封装测试函数的方法来提高代码可读性。当然,这并不是最佳的选择,本篇博客为您将介绍更为高效便捷的工具,希望能对你有所帮助!关于JupyterNotebookJupyterNotebook是一个开源的Web应用程序,它允许你创建和共享包含实时代码、方程、可视化和解释性文本的文档。它是
- 蓝桥杯备赛笔记(十) 背包问题
小魏´•ﻌ•`
蓝桥杯C++蓝桥杯笔记职场和发展
(1)背包模型有一个体积为V的背包,商店有n个物品,每个物品有一个价值v和体积w,每个物品只能被拿一次,问能够装下物品的最大价值。这里每一种物品只有两种状态,即“拿”或“不拿”。设状态dp[i][j]表示到第i个物品为止,拿的物品总体积为j的情况下的最大价值。转移方程为:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w]+v)如果不拿物品i,那么最大价值就是dp[i-1][j
- MoviePy视频编辑和处理Python库的版本问题解决:No module named ‘moviepy.editor‘
封步宇AIGC
文字音频视频自动化工具python音视频ffmpeg人工智能
MoviePy是一个强大的Python库,用于视频编辑和处理。它支持多种基本操作,如视频剪切、拼接、插入标题,以及更高级的视频合成(非线性编辑)、视频处理和自定义特效创建。MoviePy能够读写包括GIF在内的常见音频和视频格式,并且兼容Windows、Mac和Linux操作系统,支持Python2.7和3.x版本MoviePy基于ffmpeg和ImageMagick,提供了易于使用的API,能够
- 代码随想录训练营第三十八天| 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结篇
chengooooooo
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)讲解链接:代码随想录和昨天做过的零钱对换不太一样昨天的零钱兑换是完全背包里的球排列问题这个是求在指定的背包容量内求最小的组合数动态规划五部曲1定义dp方程我们假设用了dp[j]个硬币去凑j容量的背包要求dp[j]最小2推导递推公式首先最少用j-coins[i]个硬币来凑dp[j-coins[i]]容量的金额(背包)(不加上他本身的
- 物理学基础精解【219】
sakura_sea
物理与计算物理学
文章目录物理学基础圆周运动速度与加速度切向力与法向力力学基本方程质点动量相对论动量核心思想:质量随速度改变参考文献物理学基础圆周运动速度与加速度kill(all);theta:7*t^3-9*t^2+3;</
- 什么是DNS缓存?DNS缓存有什么用?
国科云
缓存
DNS缓存在DNS解析过程中发挥了重要作用,有效提升了解析速度和访问体验。那什么是DNS缓存,DNS缓存有什么用呢?接下来国科云简单介绍下。什么是DNS缓存?标准的DNS解析过程,需要进行全球递归查询,依次去请求根服务器、顶级服务器、权威服务器,最终获得解析记录,返回到客户端浏览器。这个过程涉及多级DNS服务器,产生明显的时延,影响最终的解析和访问速度。基于此,DNS系统中引入了缓存机制。DNS服
- 材料力学仿真软件:SAMCEF_(9).动态分析
kkchenjj
材料力学仿真材料力学开发语言性能优化仿真模拟数据库
动态分析动态分析是材料力学仿真软件中非常重要的一部分,用于模拟结构在时间域内的响应。在SAMCEF中,动态分析可以分为线性动态分析和非线性动态分析。线性动态分析主要用于处理线性系统,如模态分析和频域分析,而非线性动态分析则用于处理复杂的非线性系统,如瞬态动力学分析。本节将详细介绍动态分析的基本原理和具体操作步骤,包括模态分析、频域分析和瞬态动力学分析。模态分析模态分析是一种线性动态分析方法,用于确
- 差分进化算法(Differential evolution,DE)(附详细注释的Python代码)
XijueJa
算法python开发语言
概念与基本原理差分进化算法(DifferentialEvolution,简称DE)是一种基于种群的随机优化算法,由Storm和Price在1995年提出。它主要应用于解决非线性、非凸、连续和离散的优化问题。DE算法以其简单性、鲁棒性和高效性而受到广泛关注。差分进化算法的基本思想是通过模拟自然进化过程中的遗传和变异机制来寻找问题的最优解,类似于遗传算法。通过变异、交叉与选择,使得初始化的种群不断朝最
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方