The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 12^2+4^2+2^2+2^2+1^2, or 11^2+6^2+2^2+2^2+2^2, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i
If there is no solution, simple output Impossible.
169 5 2
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
169 167 3
Impossible
题目给出正整数N、个数K和次数P,要求将正整数N分解为K个正整数P次方的和,并按照题目要求输出。
#include
#include
#include
using namespace std;
vector vec,temp,ans;
int N,K,P,maxsum=-1;
void Init(){
int i=1,num=0;
scanf("%d%d%d",&N,&K,&P);
while(num<=N){
vec.push_back(num);
num=pow(i,P);
i++;
}
temp.resize(K);
}
void DFS(int current,int sum,int depth,int facsum){
int i;
if(sum>N){
return;
}//超过范围,剪枝
if(depth==K){
if(sum==N&&facsum>maxsum){
ans=temp;
maxsum=facsum;
}
return;
}
for(i=current;i>0;i--){
if(sum+vec[i]<=N){
temp[depth]=i;
DFS(i,sum+vec[i],depth+1,facsum+i);
}
}
}
void Print(){
int i;
if(maxsum<0){
printf("Impossible\n");
}else{
printf("%d = ",N);
for(i=0;i