- python,squeeze的详细解释,代码并进行解释
资源存储库
笔记算法python开发语言
目录python,squeeze的详细解释,代码并进行解释Python中的squeeze操作主要作用:PyTorch中的squeeze示例1:去除所有单维度示例2:指定去除维度NumPy中的squeeze示例1:去除所有单维度示例2:指定去除维度何时使用squeeze?总结python,squeeze的详细解释,代码并进行解释Python中的squeeze操作Squeeze是一个用于去除张量或数组
- PyTorch 深度学习实战(12):Actor-Critic 算法与策略优化
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了强化学习的基本概念,并使用深度Q网络(DQN)解决了CartPole问题。本文将深入探讨Actor-Critic算法,这是一种结合了策略梯度(PolicyGradient)和值函数(ValueFunction)的强化学习方法。我们将使用PyTorch实现Actor-Critic算法,并应用于经典的CartPole问题。一、Actor-Critic算法基础Actor-Cri
- PyTorch 深度学习实战(17):Asynchronous Advantage Actor-Critic (A3C) 算法与并行训练
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们深入探讨了SoftActor-Critic(SAC)算法及其在平衡探索与利用方面的优势。本文将介绍强化学习领域的重要里程碑——AsynchronousAdvantageActor-Critic(A3C)算法,并展示如何利用PyTorch实现并行化训练来加速学习过程。一、A3C算法原理A3C算法由DeepMind于2016年提出,通过异步并行的多个智能体(Worker)与环境交互
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
wlz249
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- llama-factory微调
AI Echoes
深度学习人工智能机器学习deepseek
大模型微调实操--llama-factoryllama-factory环境安装前置准备英伟达显卡驱动更新地址下载NVIDIA官方驱动|NVIDIAcuda下载安装地址CUDAToolkit12.2Downloads|NVIDIADeveloperpytorch下载安装地址PreviousPyTorchVersions|PyTorchllama-factory项目和文档地址https://githu
- TorchServe详解和应用
易之阴阳
机器学习人工智能深度学习pythonTorchserver
TorchServer是PyTorch的一个组件,它是一个轻量级的服务框架,用于部署和管理PyTorch模型,以便在生产环境中提供高效、可扩展的推理服务。TorchServer提供了RESTfulAPI,可以方便地与其他系统集成,支持模型热加载和热更新,确保模型的快速部署和更新。以下是TorchServer的一些关键特性:模型注册和管理:用户可以通过API注册模型,指定模型的路径、输入输出规范和所
- PyTorch 生态概览:为什么选择动态计算图框架?
小诸葛IT课堂
pytorch人工智能python
一、PyTorch的核心价值PyTorch作为深度学习框架的后起之秀,通过动态计算图技术革新了传统的静态图模式。其核心优势体现在:动态灵活性:代码即模型,支持即时调试Python原生支持:无缝衔接Python生态高效的GPU加速:通过CUDA实现透明的硬件加速活跃的社区生态:GitHub贡献者超1.8万人,日均更新100+次二、动态计算图VS静态计算图对比#动态计算图示例(PyTorch)impo
- 学习pytorch
阿什么名字不会重复呢
学习pytorch人工智能
学习PyTorch是一个很好的选择,尤其是如果你对深度学习和机器学习感兴趣。以下是一个详细的学习计划,可以帮助你系统地掌握PyTorch的基本概念和应用。学习计划概览学习周期:8周(每周约4-5小时)目标:掌握PyTorch基础,能够实现简单的深度学习模型。第1周:基础知识目标:了解深度学习的基础知识,掌握Python和NumPy基础。任务:学习Python基础(数据类型、控制流、函数、类)。资源
- Pytorch 小记 第八回:GoogleNet卷积神经网络模型代码
Start_Present
pytorchcnn神经网络分类python深度学习
本次小记,提供了一份基于pytorch的GoogleNet卷积神经网络模型的代码。除此之外,对代码中不容易理解的部分进行了讲解。本代码的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu118,d2l的版本是1.0.3importnumpyasnpimporttorchfromtorchimportnnfromtorchv
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- PyTorch 模型剪枝实例教程一、非结构化剪枝
小风_
模型压缩与加速pytorchpytorch深度学习人工智能
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)4.总结目前大部分最先进的(SOTA)深度学习技术虽然效果好,但由于其模型参数量和计算量过高,难以用于实际部署。而众所周知,生物神经网络使用高效的稀疏连接(生物大脑神经网络balabala啥的都是稀疏连接的),考虑到这一点,为了减少内存、容量和硬件消耗,同时又不牺牲模型预测的精度,在设备上部署轻量级模型,并通过私有的设备
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- 模型保存与加载:PyTorch中的实践指南
冰蓝蓝
自然语言处理pytorch人工智能python
在深度学习项目中,模型的保存和加载是一个至关重要的步骤。它不仅有助于在训练过程中保存进度,还可以在训练完成后部署模型。PyTorch提供了灵活的方式来保存和加载模型,本文将详细介绍这些方法。模型保存在PyTorch中,有两种主要的模型保存方法:保存整个模型和仅保存模型参数。保存整个模型保存整个模型意味着保存模型的结构和参数。这种方法简单直接,但文件体积较大,且依赖于模型的具体实现。importto
- torch.unsqueeze:灵活调整张量维度的利器
冰蓝蓝
transformertransformer深度学习
在深度学习框架PyTorch中,张量(Tensor)是最基本的数据结构,它类似于NumPy中的数组,但可以在GPU上运行。在日常的深度学习编程中,我们经常需要调整张量的维度以适应不同的操作和层。torch.unsqueeze函数就是PyTorch提供的一个非常有用的工具,用于在指定位置增加张量的维度。本文将详细介绍torch.unsqueeze的用法和一些实际应用场景。什么是torch.unsqu
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- pytorch 天花板级别的知识点 你可以不会用 但是不能不知道
小赖同学啊
人工智能pytorch人工智能python
PyTorch的高级知识涵盖了从模型优化到分布式训练的广泛内容,适合已经掌握基础知识的开发者进一步提升技能。以下是PyTorch的高级知识点,详细且全面:1.模型优化与加速1.1混合精度训练定义:使用半精度(FP16)和单精度(FP32)混合训练,减少内存占用并加速计算。实现:使用torch.cuda.amp模块。示例:fromtorch.cuda.ampimportautocast,GradSc
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- PyTorch中,将`DataLoader`加载的数据高效传输到GPU
大霸王龙
pytorch人工智能python
一、数据加载到GPU的核心步骤数据预处理与张量转换若原始数据为NumPy数组或Python列表,需先转换为PyTorch张量:X_tensor=torch.from_numpy(X).float()#转换为浮点张量y_tensor=torch.from_numpy(y).long()#分类任务常用长整型显式指定设备:通过.to(device)将数据移至GPU(需提前定义device对象):devi
- PyTorch中tensor赋值运算符
华zyh
强化学习pytorch
t=torch.ones((3,3))t0=tt1=t.dataprint(id(t),id(t0),id(t1),id(t.data))运行结果:2132926456040213292645604021332763196402132924110392t0与t完全相同。t1与t.data地址不一样(但是,t1.data与t.data地址相同)
- ChatGPT智能聊天机器人实现
云端源想
chatgpt机器人
以下是一个从零实现类ChatGPT智能聊天机器人的完整开发指南,包含技术选型、核心代码逻辑和推荐学习资源:—云端平台整理一、技术架构与工具核心模型基座模型:HuggingFaceTransformers库(如GPT-2/GPT-3.5TurboAPI/LLaMA2)轻量化方案:微软DeepSpeed或MetaFairScale(降低显存占用)训练框架PyTorchLightning+Acceler
- 【动手学深度学习】#1PyTorch基础操作
-一杯为品-
机器学习深度学习人工智能
主要参考学习资料:《动手学深度学习》阿斯顿·张等著【动手学深度学习PyTorch版】哔哩哔哩@跟李牧学AI目录1.1数据操作1.1.1入门1.1.2运算符1.1.3广播机制1.1.4索引和切片1.1.5节省内存1.1.6转换为其他Python对象1.2数据预处理1.2.1读取数据集1.2.2处理缺失值1.2.3转换为张量格式1.3线性代数1.3.1标量1.3.2向量1.3.3矩阵1.3.4张量1.
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- PyTorch从入门到精通:探索深度学习新境界
lmtealily
深度学习pytorch人工智能
引言PyTorch作为当前最受欢迎的深度学习框架之一,凭借其动态计算图的独特设计和与Python生态的无缝集成,正重塑着人工智能开发的新范式1。从NVIDIA的研究实践到Meta的产业应用,PyTorch的价值已渗透至学术研究、工业部署的每个角落。本文将带领您从张量操作基础开始,逐步探索GPU加速、动态图机制、框架生态集成等高级主题,最终实现理论与实战的双重突破。一、PyTorch核心基础构建1.
- 如何测试模型的推理速度
想要躺平的一枚
AI图像算法计算机视觉
前言模型的推理速度测试有两种方式:一种是使用python的时间戳time函数来记录,另一种是使用Pytorch里的Event。同时,在进行GPU测试时,为减少冷启动的状态影响,可以先进行预热。代码如下(示例):if__name__=="__main__":model=BiSeNet(backbone='STDCNet813',n_classes=2,export=True)model.cuda()
- Vision Transformer (ViT) 详细描述及 PyTorch 代码全解析
AIGC_ZY
CVtransformerpytorch深度学习
VisionTransformer(ViT)是一种将Transformer架构应用于图像分类任务的模型。它摒弃了传统卷积神经网络(CNN)的卷积操作,而是将图像分割成patches,并将这些patches视为序列输入到Transformer编码器中。ViT的处理流程输入图像被分割成多个固定大小的patch,每个patch经过线性投影变成嵌入向量,然后加上位置编码。接着,这些嵌入向量会和类别标签(c
- PyTorch 环境搭建全攻略:CUDA/cuDNN 配置与多版本管理技巧
小诸葛IT课堂
pytorch人工智能python
一、环境搭建前的准备工作1.硬件兼容性检测#检查NVIDIAGPU型号nvidia-smi#验证CUDA支持的ComputeCapabilitylspci|grep-invidia#查看CUDA版本兼容性矩阵https://developer.nvidia.com/cuda-gpus2.系统环境要求组件推荐配置最低要求操作系统Ubuntu20.04LTSWindows10/11显卡驱动NVIDIA
- PyTorch 实现 Conditional DCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码
max500600
算法pythonYOLO深度学习人工智能
以下是一个使用PyTorch实现ConditionalDCGAN(条件深度卷积生成对抗网络)进行图像到图像转换的示例代码。该代码包含训练和可视化部分,假设输入为图片和4个工艺参数,根据这些输入生成相应的图片。1.导入必要的库importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvisionimporttorchvision.
- 【模块化编程】数据标签 转 独热编码
十二月的猫
pytorch人工智能科研与代码
个人主页:十二月的猫-CSDN博客系列专栏:《PyTorch科研加速指南:即插即用式模块开发》-CSDN博客十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光目录1.前言2.标签转独热编码函数2.1完整函数2.2函数功能解释3.实战示例4.总结1.前言《Python/PyTorch极简课》专栏持续更新中,未来最少文章数量为100篇。由于专栏刚刚建立,目前免费,后续将慢慢恢复原价至99.
- vscode--工作区和相对路径
一头大学牲
程序--编程记录vscodeide编辑器
vscode的相对路径使用vscode编辑python项目时发现,它的相对路径是相对于当前工作根目录来定位的,也就是从工作文件夹的最顶级目录开始查找,而非是从当前执行文件开始查找。例子:根目录:F:\deep-learning-for-image-processing执行文件路径:F:\deep-learning-for-image-processing\pytorch_classificatio
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key