首先这个系列的第一个单元是空中机器人,博客如下:
1 Robotics: Aerial Robotics 第1+2周 课程学习记录及课后习题解答
1 Robotics: Aerial Robotics 第3+4周 课程学习记录及课后习题解答
此课程在Coursera需要科学上网才能观看,放一下B站和Coursera的课程链接
- UP主 博主自己做的字幕版本 第二单元更新完毕
- Coursera的链接介绍
此文仅为听课记录以及做题思考,可以的话我会将题目和代码题都搬运一下
有所错误或是好的想法欢迎评论区交流。(点个赞就更好了,鼓励一下~)
这一单元为什么… 没有笔记了呢?
——因为… 博主都去做字幕了… 一节课得看4-5遍基本都理解完了
emm 所以大家多多点一下,给点鼓励(三连暗示):UP主 博主自己做的字幕版本
第一周的课真的非常好,其实以前参加过天池一期:未来已来天气那题,用到过A* star听了看了这么多,现在再回来看一遍,觉得恍然大悟,也给后面看的人一点引领吧(课程代码可以白嫖走直接用到自己需要的场合,我发现我资源设的 0C币,但是还是要,后期我会弄到百度云~大家也可以留言让我发一下)
Motion and Planning - 1.2 Grassfire Algorithm:(能在b站投个币,一键三连就更好了)
【自制中英字幕】宾夕法尼亚大学机器人专项课程(Robotics)持续更新
1.If you use the Grassfire or breadth first search procedure to plan a path through a grid from a node A to a node B, then you use the same procedure to plan a path from node B to node A, will the two paths have the same length?
Yes
解释:emm,这个不用解释了吧,就是从起点到终点和终点到起点,这么规划都是一样的
2.If you use the Grassfire or breadth first search procedure to plan a path through a grid from a node A to a node B, then you use the same procedure to plan a path from node B to node A, are the two paths guaranteed to be the same except in opposite directions?
No
3.If you use the grassfire algorithm to plan a path through a series of grids with increasing dimension, 2 dimensional, 3 dimensional, 4 dimensional etc. The amount of computational effort required increases ___________ with the dimension of the problem.
exponentially
4.Generally speaking, which procedure would take less time to find a solution to a typical path planning problem on a discrete grid or graph?
A*
先看视频理解过程!!(能在b站投个币,一键三连就更好了)
Motion and Planning - 1.3 Dijkstra’s Algorithm:
【自制中英字幕】宾夕法尼亚大学机器人专项课程(Robotics)持续更新
第一个作业!直接大招:教你怎么写Dijkstra Algorithm,完整的题目我后面贴在资源里面。
这里我自己写的时候有两个注意的地方:
function [route,numExpanded] = DijkstraGrid (input_map, start_coords, dest_coords)
%
% TestScript for Assignment 1
%
%% Define a small map
map = false(10);
% Add an obstacle
map (1:5, 6) = true;
start_coords = [6, 2];
dest_coords = [8, 9];
%%
close all;
[route, numExpanded] = DijkstraGrid (map, start_coords, dest_coords);
% Uncomment following line to run Astar
[route, numExpanded] = AStarGrid (map, start_coords, dest_coords);
%HINT: With default start and destination coordinates defined above, numExpanded for Dijkstras should be 76, numExpanded for Astar should be 23.
然后是Dijkstra的整体代码,Your code are Here是需要我们填充的地方
function [route,numExpanded] = DijkstraGrid (input_map, start_coords, dest_coords)
% Run Dijkstra's algorithm on a grid.
% Inputs :
% input_map : a logical array where the freespace cells are false or 0 and
% the obstacles are true or 1
% start_coords and dest_coords : Coordinates of the start and end cell
% respectively, the first entry is the row and the second the column.
% Output :
% route : An array containing the linear indices of the cells along the
% shortest route from start to dest or an empty array if there is no
% route. This is a single dimensional vector
% numExpanded: Remember to also return the total number of nodes
% expanded during your search. Do not count the goal node as an expanded node.
% set up color map for display
% 1 - white - clear cell
% 2 - black - obstacle
% 3 - red = visited
% 4 - blue - on list
% 5 - green - start
% 6 - yellow - destination
cmap = [1 1 1; ...
0 0 0; ...
1 0 0; ...
0 0 1; ...
0 1 0; ...
1 1 0; ...
0.5 0.5 0.5];
colormap(cmap);
% variable to control if the map is being visualized on every
% iteration
drawMapEveryTime = true;
[nrows, ncols] = size(input_map);
% map - a table that keeps track of the state of each grid cell
map = zeros(nrows,ncols);
map(~input_map) = 1; % Mark free cells
map(input_map) = 2; % Mark obstacle cells
% Generate linear indices of start and dest nodes
start_node = sub2ind(size(map), start_coords(1), start_coords(2));
dest_node = sub2ind(size(map), dest_coords(1), dest_coords(2));
map(start_node) = 5;
map(dest_node) = 6;
% Initialize distance array
distanceFromStart = Inf(nrows,ncols);
% For each grid cell this array holds the index of its parent
parent = zeros(nrows,ncols);
distanceFromStart(start_node) = 0;
% keep track of number of nodes expanded
numExpanded = 0;
% Main Loop
while true
% Draw current map
map(start_node) = 5;
map(dest_node) = 6;
% make drawMapEveryTime = true if you want to see how the
% nodes are expanded on the grid.
if (drawMapEveryTime)
image(1.5, 1.5, map);
grid on;
axis image;
drawnow;
end
% Find the node with the minimum distance
[min_dist, current] = min(distanceFromStart(:));
if ((current == dest_node) || isinf(min_dist))
break;
end;
% Update map
map(current) = 3; % mark current node as visited
distanceFromStart(current) = Inf; % remove this node from further consideration
% Compute row, column coordinates of current node
[i, j] = ind2sub(size(distanceFromStart), current);
% *********************************************************************
% YOUR CODE BETWEEN THESE LINES OF STARS
% Visit each neighbor of the current node and update the map, distances
% and parent tables appropriately.
numExpanded = numExpanded + 1; %运行一次就有一次增加了
current_node=[i,j];%i是row j是col
south_node=[i+1,j];
north_node=[i-1,j];
east_node=[i,j+1];
west_node=[i,j-1];
neighbourhood=[south_node;north_node;east_node;west_node];
for k=1:4
%第一组邻居开始查找确保 有邻居且没有出边界
if( (neighbourhood(k,1)>0 && neighbourhood(k,2)>0) && (neighbourhood(k,1)<=nrows && neighbourhood(k,2)<=ncols))
%此邻居没有被访问过,不是障碍物,也不是起点
if( map(neighbourhood(k,1),neighbourhood(k,2)) ~=3 && map(neighbourhood(k,1),neighbourhood(k,2)) ~=2 && map(neighbourhood(k,1),neighbourhood(k,2)) ~=5 || map(neighbourhood(k,1),neighbourhood(k,2)) == 6)
%距离比以前存下来的距离更近
if(distanceFromStart(neighbourhood(k,1),neighbourhood(k,2)) > 1+sum(abs(start_coords-current_node)) || map(neighbourhood(k,1),neighbourhood(k,2)) == 6)
map(neighbourhood(k,1),neighbourhood(k,2))=4;%先进入现在探索列表中
distanceFromStart(neighbourhood(k,1),neighbourhood(k,2))=1+sum(abs(start_coords-current_node));
parent(neighbourhood(k,1),neighbourhood(k,2))=sub2ind(size(map),current);%把现在的邻居点加入到父列表中
map(neighbourhood(k,1),neighbourhood(k,2))=3;%放入已经访问的标识符
end
end
end
end
%*********************************************************************
end
%% Construct route from start to dest by following the parent links
if (isinf(distanceFromStart(dest_node)))
route = [];
else
route = [dest_node];
while (parent(route(1)) ~= 0)
route = [parent(route(1)), route];
end
% Snippet of code used to visualize the map and the path
for k = 2:length(route) - 1
map(route(k)) = 7;
pause(0.1);
image(1.5, 1.5, map);
grid on;
axis image;
end
end
end
先看视频,理解基本过程!!
Motion and Planning - 1.4 A* Algorithm:(能在b站投个币,一键三连就更好了)
【自制中英字幕】宾夕法尼亚大学机器人专项课程(Robotics)持续更新
function [route,numExpanded] = AStarGrid (input_map, start_coords, dest_coords)
% Run A* algorithm on a grid.
% Inputs :
% input_map : a logical array where the freespace cells are false or 0 and
% the obstacles are true or 1
% start_coords and dest_coords : Coordinates of the start and end cell
% respectively, the first entry is the row and the second the column.
% Output :
% route : An array containing the linear indices of the cells along the
% shortest route from start to dest or an empty array if there is no
% route. This is a single dimensional vector
% numExpanded: Remember to also return the total number of nodes
% expanded during your search. Do not count the goal node as an expanded node.
% set up color map for display
% 1 - white - clear cell
% 2 - black - obstacle
% 3 - red = visited
% 4 - blue - on list
% 5 - green - start
% 6 - yellow - destination
cmap = [1 1 1; ...
0 0 0; ...
1 0 0; ...
0 0 1; ...
0 1 0; ...
1 1 0; ...
0.5 0.5 0.5];
colormap(cmap);
% variable to control if the map is being visualized on every
% iteration
drawMapEveryTime = true;
[nrows, ncols] = size(input_map);
% map - a table that keeps track of the state of each grid cell
map = zeros(nrows,ncols);
map(~input_map) = 1; % Mark free cells
map(input_map) = 2; % Mark obstacle cells
% Generate linear indices of start and dest nodes
start_node = sub2ind(size(map), start_coords(1), start_coords(2));
dest_node = sub2ind(size(map), dest_coords(1), dest_coords(2));
map(start_node) = 5;
map(dest_node) = 6;
% meshgrid will `replicate grid vectors' nrows and ncols to produce
% a full grid
% type `help meshgrid' in the Matlab command prompt for more information
parent = zeros(nrows,ncols);
%
[X, Y] = meshgrid (1:ncols, 1:nrows);
xd = dest_coords(1);
yd = dest_coords(2);
% Evaluate Heuristic function, H, for each grid cell
% Manhattan distance
H = abs(X - xd) + abs(Y - yd);
H = H';
% Initialize cost arrays
f = Inf(nrows,ncols);
g = Inf(nrows,ncols);
g(start_node) = 0;
f(start_node) = H(start_node);
% keep track of the number of nodes that are expanded
numExpanded = 0;
% Main Loop
while true
% Draw current map
map(start_node) = 5;
map(dest_node) = 6;
% make drawMapEveryTime = true if you want to see how the
% nodes are expanded on the grid.
if (drawMapEveryTime)
image(1.5, 1.5, map);
grid on;
axis image;
drawnow;
end
% Find the node with the minimum f value
[min_f, current] = min(f(:));
if ((current == dest_node) || isinf(min_f))
break;
end;
% Update input_map
map(current) = 3;
f(current) = Inf; % remove this node from further consideration
% Compute row, column coordinates of current node
[i, j] = ind2sub(size(f), current);
% *********************************************************************
% ALL YOUR CODE BETWEEN THESE LINES OF STARS
% Visit all of the neighbors around the current node and update the
% entries in the map, f, g and parent arrays
%
numExpanded=numExpanded+1;
current_node=[i,j];%i是row j是col
south_node=[i+1,j];
north_node=[i-1,j];
east_node=[i,j+1];
west_node=[i,j-1];
neighbourhood=[south_node;north_node;east_node;west_node];
for k=1:4
%第一组邻居开始查找确保 有邻居且没有出边界
if( (neighbourhood(k,1)>0 && neighbourhood(k,2)>0) && (neighbourhood(k,1)<=nrows && neighbourhood(k,2)<=ncols))
%此邻居没有被访问过,不是障碍物,也不是起点
if( map(neighbourhood(k,1),neighbourhood(k,2)) ~=3 && map(neighbourhood(k,1),neighbourhood(k,2)) ~=2 && map(neighbourhood(k,1),neighbourhood(k,2)) ~=5)
%距离比以前存下来的距离更近
if(g(neighbourhood(k,1),neighbourhood(k,2))> 1+sum(abs(start_coords-current_node)) )
map(neighbourhood(k,1),neighbourhood(k,2))=4;%先进入现在探索列表中
g(neighbourhood(k,1),neighbourhood(k,2)) = 1+sum(abs(start_coords-current_node));
f(neighbourhood(k,1),neighbourhood(k,2))=g(neighbourhood(k,1),neighbourhood(k,2))+H(neighbourhood(k,1),neighbourhood(k,2));
parent(neighbourhood(k,1),neighbourhood(k,2))=sub2ind(size(map),current);%把现在的邻居点加入到父列表中
map(neighbourhood(k,1),neighbourhood(k,2))=3;%放入已经访问的标识符
end
end
end
end
%*********************************************************************
end
%% Construct route from start to dest by following the parent links
if (isinf(f(dest_node)))
route = [];
else
route = [dest_node];
while (parent(route(1)) ~= 0)
route = [parent(route(1)), route];
end
% Snippet of code used to visualize the map and the path
for k = 2:length(route) - 1
map(route(k)) = 7;
pause(0.1);
image(1.5, 1.5, map);
grid on;
axis image;
end
end
end