一些算法的MapReduce实现——图的BFS遍历

Breadth-first search 简介

BFS算法伪代码如下[1]

BFS(G, s)
  for each vertex u ∈ V [G] - {s}
       do color[u] ← WHITE
          d[u] ← ∞
          π[u] ← NIL
  //除了源顶点s之外,第1-4行置每个顶点为白色,置每个顶点u的d[u]为无穷大,
  //置每个顶点的父母为NIL。
  color[s] ← GRAY
  //第8行,将源顶点s置为灰色,这是因为在过程开始时,源顶点已被发现。
  d[s] ← 0       //将d[s]初始化为0。
  π[s] ← NIL     //将源顶点的父顶点置为NIL。
  Q ← Ø
  ENQUEUE(Q, s)                  //入队
  //第12、13行,初始化队列Q,使其仅含源顶点s。
  while Q ≠ Ø
      do u ← DEQUEUE(Q)    //出队
  //第16行,确定队列头部Q头部的灰色顶点u,并将其从Q中去掉。
         for each v ∈ Adj[u]        //for循环考察u的邻接表中的每个顶点v
             do if color[v] = WHITE
                   then color[v] ← GRAY     //置为灰色
                        d[v] ← d[u] + 1     //距离被置为d[u]+1
                        π[v] ← u            //u记为该顶点的父母
                        ENQUEUE(Q, v)        //插入队列中
         color[u] ← BLACK      //u 置为黑色



具体流程图如下:
一些算法的MapReduce实现——图的BFS遍历_第1张图片

MapReduce实现BFS

假设有一个无向图,如下:

一些算法的MapReduce实现——图的BFS遍历_第2张图片
每一条边的权重设为1

InputFormat 

sourceadjacency_list|distance_from_the_source|color|parentNode

根据上图,输入数据为:

12,3|0|GRAY|source
21,3,4,5|Integer.MAX_VALUE|WHITE|null
31,4,2|Integer.MAX_VALUE|WHITE|null
42,3|Integer.MAX_VALUE|WHITE|null
52|Integer.MAX_VALUE|WHITE|null

利用上面的数据,指定3个reducer对其进行处理,从开始的算法简介可以看出,不是一步MapReduce过程就可以把整个graph遍历一遍的,这需要迭代,也就需要多次运行MapReduce过程,直到所有的节点都被访问过,也就是节点的颜色都被标记为黑色,就退出。

MapReduce给我们提供了一些方法可以查看每一步MRJob运行过后的中间结果。

Intermediate output 1:

Reducer 1: (part-r-00000)

21,3,4,5,|1|GRAY|1
52,|Integer.MAX_VALUE|WHITE|null

Reducer 2: (part-r-00001)

31,4,2,|1|GRAY|1

Reducer 3: (part-r-00002)

12,3,|0|BLACK|source
42,3,|Integer.MAX_VALUE|WHITE|null

一些算法的MapReduce实现——图的BFS遍历_第3张图片

Intermediate output 2:

Reducer 1: (part-r-00000)

21,3,4,5,|1|BLACK|1
52,|2|GRAY|2

Reducer 2: (part-r-00001)

31,4,2,|1|BLACK|1

Reducer 3: (part-r-00002)

12,3,|0|BLACK|source
42,3,|2|GRAY|2

一些算法的MapReduce实现——图的BFS遍历_第4张图片

Final output:

Reducer 1: (part-r-00000)

21,3,4,5,|1|BLACK|1
52,|2|BLACK|2

Reducer 2: (part-r-00001)

31,4,2,|1|BLACK|1

Reducer 3: (part-r-00002)

12,3,|0|BLACK|source
42,3,|2|BLACK|2

一些算法的MapReduce实现——图的BFS遍历_第5张图片

Counters:

MapReduce提供了Counters来收集统计job的信息,想quality-control, 应用层的信息收集,问题诊断。Hadoop自己保留了一些Counters,用于监控收集每个job的信息。具体Counter介绍参见 [6]

我们也可以自己定义Counter,来收集我们自己的信息。

static enum MoreIterations {
        numberOfIterations
}

上面我们定义一个枚举变量, numberOfIterations作为Counter的name, Counter在MRJobs中作为全局变量,只要还有节点没有被访问,那么Counter的值就加1,。

Node.java

该class 存储了图节点的信息,node id,相邻节点,以及当前被访问的状态,距离等等
package com.joey.mapred.graph.utils;

import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.io.Text;

public class Node {
  /**
   * three possible colors a node can have to keep track 
   * of the visiting status of the nodes during graph search
   */
  public static enum Color {
    WHITE, //unvisited
    GRAY,  // visited, unprocess
    BLACK  // processed
  };
  
  private String id;  // id of the node
  private int distance; // distance of the node from source node
  // list of the edges
  private List edges = new ArrayList();
  private Color color = Color.WHITE;
  
  // parent/ predecessor of the node
  // The parent of the source is marked "source" to leave it unchanged
  private String parent;
  
  public Node() {
    distance = Integer.MAX_VALUE;
    color = Color.WHITE;
    parent = null;
  }
  
  public Node(String nodeInfo) {
    String[] inputVal = nodeInfo.split("\t");
    String key = "";
    String val = "";
    
    try {
      key = inputVal[0]; // node id
      // the list of adjacent nodes, distance, color, parent
      val = inputVal[1];
    } catch (Exception e) {
      e.printStackTrace();
      System.exit(1);
    }
    
    String[] tokens = val.split("\\|");
    this.id = key;
    for (String s : tokens[0].split(",")) {
      if (s.length() > 0) edges.add(s);
    }
    
    if (tokens[1].equalsIgnoreCase("Integer.MAX_VALUE")) {
      this.distance = Integer.MAX_VALUE;
    } else {
      this.distance = Integer.parseInt(tokens[1]);
    }
    
    this.color = Color.valueOf(tokens[2]);
    this.parent = tokens[3]; 
  }
  
  public Text getNodeInfo() {
    StringBuilder sb = new StringBuilder();
    for (String v : edges) {
      sb.append(v).append(",");
    }
    
    sb.append("|");
    
    if (this.distance < Integer.MAX_VALUE) {
      sb.append(this.distance).append("|");
    } else {
      sb.append("Integer.MAX_VALUE").append("|");
    }
    
    sb.append(color.toString()).append("|");
    sb.append(getParent());
    
    return new Text(sb.toString());
  }
  
  public String getId() {
    return id;
  }

  public void setId(String id) {
    this.id = id;
  }

  public int getDistance() {
    return distance;
  }

  public void setDistance(int distance) {
    this.distance = distance;
  }

  public List getEdges() {
    return edges;
  }

  public void setEdges(List edges) {
    this.edges = edges;
  }

  public Color getColor() {
    return color;
  }

  public void setColor(Color color) {
    this.color = color;
  }

  public String getParent() {
    return parent;
  }

  public void setParent(String parent) {
    this.parent = parent;
  }
  
}

TraverseGraph.java

该class提供了Mapper和Reducer的基类,Mapper主要设置开始时的sourceNode的所有邻节点的访问状态,迭代中当前节点及邻节点的状态EMIT给reducer
Reducer则根据Mapper提交的信息,选择其中的最终状态(因为每个节点的邻接节点有可能重复,那么由Mapper提交的状态可能多样),最后把最终状态的节点返回


package com.joey.mapred.graph;

import java.io.IOException;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

import com.joey.mapred.graph.utils.Node;
import com.joey.mapred.graph.utils.Node.Color;

public class TraverseGraph {

	/**
	 * 
	 * Description : Mapper class that implements the map part of Breadth-first
	 * search algorithm. The nodes colored WHITE or BLACK are emitted as such. For
	 * each node that is colored GRAY, a new node is emitted with the distance
	 * incremented by one and the color set to GRAY. The original GRAY colored
	 * node is set to BLACK color and it is also emitted.
	 * 
	 * Input format  : list_of_adjacent_nodes|distance_from_the_source|color|parent>
	 * 
	 * Output format  : 
	 * 
	 * Reference :
	 * http://www.johnandcailin.com/blog/cailin/breadth-first-graph-search
	 * -using-iterative-map-reduce-algorithm
	 * 
	 */

	// the type parameters are the input keys type, the input values type, the
	// output keys type, the output values type
	public static class TraverseMapper extends Mapper {
		protected void map(Object key, Text value, Context context, Node inNode)
				throws IOException, InterruptedException {
			if (inNode.getColor() == Color.GRAY) {
				for (String neighbor : inNode.getEdges()) {
					Node adjacentNode = new Node();
					adjacentNode.setId(neighbor);
					adjacentNode.setDistance(inNode.getDistance() + 1);
					adjacentNode.setColor(Node.Color.GRAY);
					adjacentNode.setParent(inNode.getId());

					context.write(new Text(adjacentNode.getId()),
							adjacentNode.getNodeInfo());
				}
				// this node is done, color it black
				inNode.setColor(Node.Color.BLACK);
			}

			context.write(new Text(inNode.getId()), inNode.getNodeInfo());
		}
	}

	/**
	 * 
	 * Description : Reducer class that implements the reduce part of parallel
	 * Breadth-first search algorithm. Make a new node which combines all
	 * information for this single node id that is for each key. The new node
	 * should have the full list of edges, the minimum distance, the darkest
	 * Color, and the parent/predecessor node
	 * 
	 * Input format  : 
	 * 
	 * Output format  : 
	 * 
	 */
	public static class TraverseReducer extends Reducer {
		protected Node reduce(Text key, Iterable values, Context context,
				Node outNode) throws IOException, InterruptedException {
			// set the node id as the key
			outNode.setId(key.toString());

			for (Text value : values) {
				Node inNode = new Node(key.toString() + "\t" + value.toString());

				if (inNode.getEdges().size() > 0) {
					outNode.setEdges(inNode.getEdges());
				}

				if (inNode.getDistance() < outNode.getDistance()) {
					outNode.setDistance(inNode.getDistance());
					outNode.setParent(inNode.getParent());
				}

				if (inNode.getColor().ordinal() > outNode.getColor().ordinal()) {
					outNode.setColor(inNode.getColor());
				}

			}

			context.write(key, new Text(outNode.getNodeInfo()));

			return outNode;
		}
	}
}

Driver.java

该class相对来说就简单点,不用过多的解释了

package com.joey.mapred.graph;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counters;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.ToolRunner;

import com.joey.mapred.BaseDriver;
import com.joey.mapred.graph.TraverseGraph.TraverseMapper;
import com.joey.mapred.graph.TraverseGraph.TraverseReducer;
import com.joey.mapred.graph.utils.Node;

/**
 * Description : MapReduce program to solve the single-source shortest path
 * problem using parallel breadth-first search. This program also illustrates
 * how to perform iterative map-reduce.
 * 
 * The single source shortest path is implemented by using Breadth-first search
 * concept.
 * 
 * Reference :
 * http://www.johnandcailin.com/blog/cailin/breadth-first-graph-search
 * -using-iterative-map-reduce-algorithm
 * 
 */

public class BFSearchDriver extends BaseDriver {

  static class SearchMapperSSSP extends TraverseMapper {

    public void map(Object key, Text value, Context context)
        throws IOException, InterruptedException {

      Node inNode = new Node(value.toString());
      // calls the map method of the super class SearchMapper
      super.map(key, value, context, inNode);

    }
  }
  
  
  static class SearchReducerSSSP extends TraverseReducer {

    // the parameters are the types of the input key, the values associated with
    // the key and the Context object through which the Reducer communicates
    // with the Hadoop framework

    public void reduce(Text key, Iterable values, Context context)
        throws IOException, InterruptedException {

      // create a new out node and set its values
      Node outNode = new Node();

      // call the reduce method of SearchReducer class
      outNode = super.reduce(key, values, context, outNode);

      // if the color of the node is gray, the execution has to continue, this
      // is done by incrementing the counter
      if (outNode.getColor() == Node.Color.GRAY)
        context.getCounter(MoreIterations.numberOfIterations).increment(1L);
    }
  }
  
  public int run(String[] args) throws Exception {
    int iterationCount = 0; // counter to set the ordinal number of the
                            // intermediate outputs
    Job job;
    long terminationValue = 1;
    
    // while there are more gray nodes to process
    while (terminationValue > 0) {
      job = getJobConf(args); // get the job configuration
      String input, output;

      // setting the input file and output file for each iteration
      // during the first time the user-specified file will be the input whereas
      // for the subsequent iterations
      // the output of the previous iteration will be the input
      if (iterationCount == 0) { 
      	// for the first iteration the input will be the first input argument
        input = args[0];
      } else {
        // for the remaining iterations, the input will be the output of the
        // previous iteration
        input = args[1] + iterationCount;
      }
      output = args[1] + (iterationCount + 1); // setting the output file

      FileInputFormat.setInputPaths(job, new Path(input)); 
      FileOutputFormat.setOutputPath(job, new Path(output)); 

      job.waitForCompletion(true); 

      Counters jobCntrs = job.getCounters();
      terminationValue = jobCntrs
          .findCounter(MoreIterations.numberOfIterations).getValue();
      iterationCount++;
    }

    return 0;
  }
  
  static enum MoreIterations {
    numberOfIterations
  }
  
  public static void main(String[] args) throws Exception {
    int res = ToolRunner.run(new Configuration(), new BFSearchDriver(), args);
    if(args.length != 2){
      System.err.println("Usage:   ");
    }
    System.exit(res);
  }


  @Override
  protected Job getJobConf(String[] args) throws Exception {
    JobInfo jobInfo = new JobInfo() {

      @Override
      public Class getJarByClass() {
        return BFSearchDriver.class;
      }

      @Override
      public Class getMapperClass() {
        return SearchMapperSSSP.class;
      }

      @Override
      public Class getCombinerClass() {
        return null;
      }

      @Override
      public Class getReducerClass() {
        return SearchReducerSSSP.class;
      }

      @Override
      public Class getOutputKeyClass() {
        return Text.class;
      }

      @Override
      public Class getOutputValueClass() {
        return Text.class;
      }

      @Override
      public Class getInputFormatClass() {
        return TextInputFormat.class;
      }

      @Override
      public Class getOutputFormatClass() {
        return TextOutputFormat.class;
      }
      
    };
    return setupJob("BFSSearch", jobInfo);
  }

}

BaseDriver.java

package com.joey.mapred;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.OutputFormat;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.Tool;

public abstract class BaseDriver extends Configured implements Tool {

  // method to set the configuration for the job and
  // the mapper and the reducer classes
  protected Job setupJob(String jobName, JobInfo jobInfo) throws Exception {
   Configuration conf = getConf();
  
   if (conf == null) {
   throw new RuntimeException("Configuration should not be null");
   }
  
    Job job = new Job(conf, jobName);
    // set the several classes
    job.setJarByClass(jobInfo.getJarByClass());
    // set the mapper class
    job.setMapperClass(jobInfo.getMapperClass());

    // the combiner class is optional, so set it only if it
    // is required by the program
    if (jobInfo.getCombinerClass() != null)
      job.setCombinerClass(jobInfo.getCombinerClass());

    // set the reducer class
    job.setReducerClass(jobInfo.getReducerClass());

    // the number of reducers is set to 3, this can be
    // altered according to the program's requirements
    job.setNumReduceTasks(3);

    // set the type of the output key and value for the
    // Map & Reduce functions
    job.setOutputKeyClass(jobInfo.getOutputKeyClass());
    job.setOutputValueClass(jobInfo.getOutputValueClass());
    if (jobInfo.getInputFormatClass() != null)
      job.setInputFormatClass(jobInfo.getInputFormatClass());
    if (jobInfo.getOutputFormatClass() != null)
      job.setOutputFormatClass(jobInfo.getOutputFormatClass());
    return job;
  }

  protected abstract Job getJobConf(String[] args) throws Exception;
  
  protected abstract class JobInfo {
    public abstract Class getJarByClass();

    public abstract Class getMapperClass();

    public abstract Class getCombinerClass();

    public abstract Class getReducerClass();

    public abstract Class getOutputKeyClass();

    public abstract Class getOutputValueClass();
    
    public abstract Class getInputFormatClass();
    
    public abstract Class getOutputFormatClass();
  }
}



有了上面的遍历,我们还可以利用MapReduce 做图的拓扑排序,Single-pair shortest-path,Single-source shortest-paths(上面的实现过程其实就无向图的Single-source shortest paths,只不过简单化了), all-pairs shortest-paths

Reference

1、http://blog.csdn.net/v_JULY_v/article/details/6111353
2、http://en.wikipedia.org/wiki/Breadth-first_search
3、http://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters
4、http://www.ics.uci.edu/~eppstein/161/960215.html
5、http://oucsace.cs.ohiou.edu/~razvan/courses/cs4040/lecture20.pdf
6、http://langyu.iteye.com/blog/1171091

你可能感兴趣的:(一些算法的MapReduce实现——图的BFS遍历)