01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为C1,C2,…,Cn,与之相对应的价值为W1,W2,…,Wn.求解将那些物品装入背包可使总价值最大。
动态规划(DP):
1) 子问题定义:F[i][j]表示前i件物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。
2) 根据第i件物品放或不放进行决策
(1-1)
其中F[i-1][j]表示前i-1件物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值;
而F[i-1][j-C[i]]+W[i]表示前i-1件物品中选取若干件物品放入剩余空间为j-C[i]的背包中所能取得的最大价值加上第i件物品的价值。
根据第i件物品放或是不放确定遍历到第i件物品时的状态F[i][j]。
设物品件数为N,背包容量为V,第i件物品体积为C[i],第i件物品价值为W[i]。
由此写出伪代码如下:
以上伪代码数组均为基于1索引,及第一件物品索引为1。时间及空间复杂度均为O(VN)
举例:表1-1为一个背包问题数据表,设背包容量为10根据上述解决方法可得到对应的F[i][j]如表1-2所示,最大价值即为F[6][10].
表1-1背包问题数据表
物品号i | 1 | 2 | 3 | 4 | 5 | 6 |
体积C | 2 | 3 | 1 | 4 | 6 | 5 |
价值W | 5 | 6 | 5 | 1 | 19 | 7 |
表1-2前i件物品选若干件放入空间为j的背包中得到的最大价值表
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
2 | 0 | 5 | 6 | 6 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
3 | 0 | 5 | 5 | 10 | 11 | 11 | 16 | 16 | 16 | 16 | 16 |
4 | 0 | 5 | 5 | 10 | 11 | 11 | 16 | 16 | 16 | 16 | 17 |
5 | 0 | 5 | 5 | 10 | 11 | 11 | 19 | 24 | 24 | 29 | 30 |
6 | 0 | 5 | 5 | 10 | 11 | 11 | 19 | 24 | 24 | 29 | 30 |
很多文章讲背包问题时只是把最大价值求出来了,并没有把所选的是哪些物品找出来。本人在学习背包问题之前遇到过很多的类似问题,当时也是只求得了最大价值或最大和,对具体哪些物品或路径等细节也束手无策。再次和大家一起分享细节的求法。
根据算法求出的最大价值表本身其实含有位置信息,从F[N][V]逆着走向F[0][0],设i=N,j=V,如果F[i][j]==F[i-1][j-C[i]]+W[i]说明包里面有第i件物品,同时j -= C[i],不管F[i][j]与F[i-1][j-C[i]]+W[i]相不相等i都要减1,因为01背包的第i件物品要么放要么不放,不管放还是不放其已经遍历过了,需要继续往下遍历。
打印背包内物品的伪代码如下:
当然也可以定义一个二维数组Path[N][V]来存放背包内物品信息,开始时Path[N][V]初始化为0,当 F[i][j]==F[i-1][j-C[i]]+W[i]时Path[i][j]置1。最后通过从Path[N+1][V+1]逆着走向Path[0][0]来获取背包内物品。其中Path[0][]与Path[][0]为边界。
加入路径信息的伪代码如下:
打印背包内物品的伪代码如下:
在时间及空间复杂度均为O(NV)的情况下,利用Path[][]的方法明显比直接通过F[i][j]==F[i-1][j-C[i]]+W[i]来打印物品耗费空间,Path[][]需要额外的空间O(NV)但总空间复杂度不变仍为O(NV)。但下面要讲到的O(V)的空间复杂度的方法却不能利用关系式F [j]==F [j-C[i]]+W[i]而只能利用Path[][]进行标记.
接下来考虑如何压缩空间,以降低空间复杂度。
时间复杂度为O(VN),空间复杂度将为O(V)
观察伪代码可也发现,F[i][j]只与F[i-1][j]和F[i-1][j-C[i]]有关,即只和i-1时刻状态有关,所以我们只需要用一维数组F[]来保存i-1时的状态F[]。假设i-1时刻的F[]为{a0,a1,a2,…,av},难么i时刻的F[]中第k个应该为max(ak,ak-C[i]+W[i])即max(F[k],F[k-C[i]]+W[i]),这就需要我们遍历V时逆序遍历,这样才能保证求i时刻F[k]时F[k-C[i]]是i-1时刻的值。如果正序遍历则当求F[k]时其前面的F[0],F[1],…,F[K-1]都已经改变过,里面存的都不是i-1时刻的值,这样求F[k]时利用F[K-C[i]]必定是错的值。最后F[V]即为最大价值。
求F[j]的状态方程如下:
(1-2)
伪代码如下:
同样,怎么求路径?
利用前面讲到的Path[][]标记,需空间消耗O(NV)。这里不能用F [j]==F [j-C[i]]+W[i]来判断是因为一维数组并不能提供足够的信息来寻找二维路径。
加入路径信息的伪代码如下:
打印路径的伪代码和前面未压缩空间复杂度时的伪代码一样,这里不再重写。
下面针对前面提到的表1-1提供两种方法的测试代码:
//时间复杂度O(VN),空间复杂度为O(VN)
//时间复杂度O(VN),不考虑路径空间复杂度为O(V),考虑路径空间复杂度为O(VN)
测试代码
==============================================================================================================
完全背包是在N种物品中选取若干件(同一种物品可多次选取)放在空间为V的背包里,每种物品的体积为C1,C2,…,Cn,与之相对应的价值为W1,W2,…,Wn.求解怎么装物品可使背包里物品总价值最大。
动态规划(DP):
1) 子问题定义:F[i][j]表示前i种物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。
2) 根据第i种物品放多少件进行决策
(2-1)
其中F[i-1][j-K*C[i]]+K*W[i]表示前i-1种物品中选取若干件物品放入剩余空间为j-K*C[i]的背包中所能得到的最大价值加上k件第i种物品;
设物品种数为N,背包容量为V,第i种物品体积为C[i],第i种物品价值为W[i]。
与01背包相同,完全背包也需要求出NV个状态F[i][j]。但是完全背包求F[i][j]时需要对k分别取0,…,j/C[i]求最大F[i][j]值,耗时为j/C[i]。那么总的时间复杂度为O(NV∑(j/C[i]))
由此写出伪代码如下:
以上伪代码数组均为基于1索引,即第一件物品索引为1。空间复杂度O(VN)、时间复杂度为O(NV∑(j/C[i]))
简单优化:
若两件物品满足C[i] ≤C[j]&&W[i] ≥W[j]时将第j种物品直接筛选掉。因为第i种物品比第j种物品物美价廉,用i替换j得到至少不会更差的方案。
这个筛选过程如下:先找出体积大于背包的物品直接筛掉一部分(也可能一种都筛不掉)复杂度O(N)。利用计数排序思想对剩下的物品体积进行排序,同时筛选出同体积且价值最大的物品留下,其余的都筛掉(这也可能一件都筛不掉)复杂度O(V)。整个过程时间复杂度为O(N+V)
转化为01背包:
因为同种物品可以多次选取,那么第i种物品最多可以选取V/C[i]件价值不变的物品,然后就转化为01背包问题。整个过程的时间复杂度并未减少。如果把第i种物品拆成体积为C[i]×2k价值W[i]×2k的物品,其中满足C[i]×2k≤V。那么在求状态F[i][j]时复杂度就变为O(log2(V/C[i]))。整个时间复杂度就变为O(NVlog2(V/C[i]))
时间复杂度优化为O(NV)
将原始算法的DP思想转变一下。
设F[i][j]表示出在前i种物品中选取若干件物品放入容量为j的背包所得的最大价值。那么对于第i种物品的出现,我们对第i种物品放不放入背包进行决策。如果不放那么F[i][j]=F[i-1][j];如果确定放,背包中应该出现至少一件第i种物品,所以F[i][j]种至少应该出现一件第i种物品,即F[i][j]=F[i][j-C[i]]+W[i]。为什么会是F[i][j-C[i]]+W[i]?因为F[i][j-C[i]]里面可能有第i种物品,也可能没有第i种物品。我们要确保F[i][j]至少有一件第i件物品,所以要预留C[i]的空间来存放一件第i种物品。
状态方程为:
(2-2)
伪代码为:
具体背包中放入那些物品的求法和01背包情况差不多,从F[N][V]逆着走向F[0][0],设i=N,j=V,如果F[i][j]==F[i][j-C[i]]+W[i]说明包里面有第i件物品,同时j -= C[i]。完全背包问题在处理i自减和01背包不同,01背包是不管F[i][j]与F[i-1][j-C[i]]+W[i]相不相等i都要减1,因为01背包的第i件物品要么放要么不放,不管放还是不放其已经遍历过了,需要继续往下遍历而完全背包只有当F[i][j]与F[i-1][j]相等时i才自减1。因为F[i][j]=F[i-1][j]说明背包里面不会含有i,也就是说对于前i种物品容量为j的背包全部都放入前i-1种物品才能实现价值最大化,或者直白的理解为前i种物品中第i种物品物不美价不廉,直接被筛选掉。
打印背包内物品的伪代码如下:
和01背包一样,也可以利用一个二维数组Path[][]来标记背包中的物品。开始时Path[N][V]初始化为0,当 F[i][j]==F[i][j-C[i]]+W[i]时Path[i][j]置1。最后通过从Path[N+1][V+1]逆着走向Path[0][0]来获取背包内物品。其中Path[0][]与Path[][0]为边界。同样,在打印路径的时候当Path[][]=1时,打印W[i];Path[][]=0时i自减1.
加入路径信息的伪代码如下:
打印背包内物品的伪代码如下:
优化空间复杂度为O(V)
和01背包问题一样,完全背包也可以用一维数组来保存数据。算法样式和01背包的很相似,唯一不同的是对V遍历时变为正序,而01背包为逆序。01背包中逆序是因为F[i][]只和F[i-1][]有关,且第i件的物品加入不会对F[i-1][]状态造成影响。而完全背包则考虑的是第i种物品的出现的问题,第i种物品一旦出现它势必应该对第i种物品还没出现的各状态造成影响。也就是说,原来没有第i种物品的情况下可能有一个最优解,现在第i种物品出现了,而它的加入有可能得到更优解,所以之前的状态需要进行改变,故需要正序。
状态方程为:
(2-3)
伪代码如下:
具体背包中放入那些物品的求法和上面空间复杂度为O(NV)算法一样,用一个Path[][]记录背包信息。但这里面是当F[i]=F[i-C[i]]+W[i]时将Path置1.
伪代码如下:
打印路径的伪代码和前面未压缩空间复杂度时的伪代码一样,这里不再重写。
举例:表2-1为一个背包问题数据表,设背包容量为10根据上述解决方法可得到对应的F[i][j]如表2-2所示,最大价值即为F[6][10].
表2-1背包问题数据表
物品号i | 1 | 2 | 3 | 4 | 5 | 6 |
体积C | 3 | 2 | 5 | 1 | 6 | 4 |
价值W | 6 | 5 | 10 | 2 | 16 | 8 |
表2-2前i件物品选若干件放入空间为j的背包中得到的最大价值表
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 6 | 6 | 6 | 12 | 12 | 12 | 18 | 18 |
2 | 0 | 0 | 5 | 6 | 10 | 11 | 15 | 16 | 20 | 21 | 25 |
3 | 0 | 0 | 5 | 6 | 10 | 11 | 15 | 16 | 20 | 21 | 25 |
4 | 0 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 25 |
5 | 0 | 2 | 5 | 7 | 10 | 12 | 16 | 18 | 21 | 23 | 26 |
6 | 0 | 2 | 5 | 7 | 10 | 12 | 16 | 18 | 21 | 23 | 26 |
下面针对前面提到的表2-1提供两种方法的测试代码:
//时间复杂度O(VN),空间复杂度为O(VN)
//时间复杂度O(VN),不考虑路径空间复杂度为O(V),考虑路径空间复杂度为O(VN)
测试代码: