矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结)

HDU 1542 [POJ 1151] Atlantis (矩形面积并)

  • 题意:

    N<=100

  • 分析:

    • 离散化: 这些技巧都是老生常谈的了, 不然浮点数怎么建树, 离散化 x 坐标就可以了
    • 扫描线: 首先把矩形按 y 轴分成两条边, 上边和下边, 对 x 轴建树, 扫描线可以看成一根平行于 x 轴的直线.
      y=0 开始往上扫, 下边表示要计算面积 +1 , 上边表示已经扫过了 1 , 直到扫到最后一条平行于 x 轴的边
      但是真正在做的时候, 不需要完全模拟这个过程, 一条一条边地插入线段树就好了
    • 线段树: 用于动态维护扫描线在往上走时, x 轴哪些区域是有合法面积的
    • ps: 这种线段树是不用 lazy 的, 因为不用 push_down , 为啥不用 push_down , 因为没有查询操作
  • 扫描线扫描的过程(建议配合代码模拟)

    ps:,,
    以下图转载自@kk303的博客

初始状态

初始状态

这里写图片描述

扫到最下边的线, 点 13 更新为 1

这里写图片描述

扫到第二根线, 此时 S=lcnt!=0h线 , 得到绿色的面积, 加到答案中去, 随后更新计数

这里写图片描述

同上, 将黄色的面积加到答案中去

这里写图片描述

同上, 将灰色的面积加到答案中去

矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结)_第1张图片

同上, 将紫色的面积加到答案中去

矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结)_第2张图片

同上, 将蓝色的面积加到答案中去

  • 代码
//
//  Created by TaoSama on 2015-07-14
//  Copyright (c) 2015 TaoSama. All rights reserved.
//
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
#define pr(x) cout << #x << " = " << x << "  "
#define prln(x) cout << #x << " = " << x << endl
const int N = 205, INF = 0x3f3f3f3f, MOD = 1e9 + 7;

int n;
struct Seg {
    double l, r, h; int d;
    Seg() {}
    Seg(double l, double r, double h, int d): l(l), r(r), h(h), d(d) {}
    bool operator< (const Seg& rhs) const {return h < rhs.h;}
} a[N];

int cnt[N << 2]; //根节点维护的是[l, r+1]的区间
double sum[N << 2], all[N];

#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1

void push_up(int l, int r, int rt) {
    if(cnt[rt]) sum[rt] = all[r + 1] - all[l];
    else if(l == r) sum[rt] = 0; //leaves have no sons
    else sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}

void update(int L, int R, int v, int l, int r, int rt) {
    if(L <= l && r <= R) {
        cnt[rt] += v;
        push_up(l, r, rt);
        return;
    }
    int m = l + r >> 1;
    if(L <= m) update(L, R, v, lson);
    if(R > m) update(L, R, v, rson);
    push_up(l, r, rt);
}

int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt","w",stdout);
#endif
    ios_base::sync_with_stdio(0);

    int kase = 0;
    while(scanf("%d", &n) == 1 && n) {
        for(int i = 1; i <= n; ++i) {
            double x1, y1, x2, y2;
            scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
            a[i] = Seg(x1, x2, y1, 1);
            a[i + n] = Seg(x1, x2, y2, -1);
            all[i] = x1; all[i + n] = x2;
        }
        n <<= 1;
        sort(a + 1, a + 1 + n);
        sort(all + 1, all + 1 + n);
        int m = unique(all + 1, all + 1 + n) - all - 1;

        memset(cnt, 0, sizeof cnt);
        memset(sum, 0, sizeof sum);

        double ans = 0;
        for(int i = 1; i < n; ++i) {
            int l = lower_bound(all + 1, all + 1 + m, a[i].l) - all;
            int r = lower_bound(all + 1, all + 1 + m, a[i].r) - all;
            if(l < r) update(l, r - 1, a[i].d, 1, m, 1);
            ans += sum[1] * (a[i + 1].h - a[i].h);
        }
        printf("Test case #%d\nTotal explored area: %.2f\n\n", ++kase, ans);
    }
    return 0;
}

HDU 1255 覆盖的面积 (矩形面积交)

  • 题意:

    N<=1000,

  • 分析

    • 前面的与矩形面积并类似, 不同的是 push_up 的时候要考虑至少覆盖一次 one 和至少覆盖两次 two 的更新
      尤其是当前被覆盖了一次的时候, 由于没有 push_down 操作, 父亲节点的信息是没有同步到儿子节点的, 这样的话 push_up 就要考虑了.
    • 父亲被记录覆盖了一次, 但是如果儿子被覆盖过, 这些操作都是在这个父亲这个大区间上的, 就相当于父亲区间被覆盖了至少两次, 所以 two one 都要更新
  • 代码

//
//  Created by TaoSama on 2015-10-04
//  Copyright (c) 2015 TaoSama. All rights reserved.
//
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
#define pr(x) cout << #x << " = " << x << "  "
#define prln(x) cout << #x << " = " << x << endl
const int N = 2e3 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;

int n;
struct Seg {
    double l, r, h; int d;
    Seg() {}
    Seg(double l, double r, double h, double d): l(l), r(r), h(h), d(d) {}
    bool operator< (const Seg& rhs) const {
        return h < rhs.h;
    }
} a[N];

int cnt[N << 2];
double one[N << 2], two[N << 2], all[N];

#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1

void push_up(int l, int r, int rt) {
    if(cnt[rt] >= 2) two[rt] = one[rt] = all[r + 1] - all[l];
    else if(cnt[rt] == 1) {
        one[rt] = all[r + 1] - all[l];
        if(l == r) two[rt] = 0;
        else two[rt] = one[rt << 1] + one[rt << 1 | 1];
    } else {
        if(l == r) one[rt] = two[rt] = 0;
        else {
            one[rt] = one[rt << 1] + one[rt << 1 | 1];
            two[rt] = two[rt << 1] + two[rt << 1 | 1];
        }
    }
}

void update(int L, int R, int v, int l, int r, int rt) {
    if(L <= l && r <= R) {
        cnt[rt] += v;
        push_up(l, r, rt);
        return;
    }
    int m = l + r >> 1;
    if(L <= m) update(L, R, v, lson);
    if(R > m) update(L, R, v, rson);
    push_up(l, r, rt);
}

int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt","w",stdout);
#endif
    ios_base::sync_with_stdio(0);

    int t; scanf("%d", &t);
    while(t--) {
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) {
            double x1, y1, x2, y2;
            scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
            a[i] = Seg(x1, x2, y1, 1);
            a[i + n] = Seg(x1, x2, y2, -1);
            all[i] = x1; all[i + n] = x2;
        }
        n <<= 1;
        sort(a + 1, a + 1 + n);
        sort(all + 1, all + 1 + n);
        int m = unique(all + 1, all + 1 + n) - all - 1;

        memset(cnt, 0, sizeof cnt);
        memset(one, 0, sizeof one);
        memset(two, 0, sizeof two);

        double ans = 0;
        for(int i = 1; i < n; ++i) {
            int l = lower_bound(all + 1, all + 1 + m, a[i].l) - all;
            int r = lower_bound(all + 1, all + 1 + m, a[i].r) - all;
            if(l < r) update(l, r - 1, a[i].d, 1, m, 1);
            ans += two[1] * (a[i + 1].h - a[i].h);
        }
        printf("%.2f\n", ans);
    }
    return 0;
}

HDU 1828 [POJ 1177] Picture(矩形周长并)

  • 题意:

    N<=5000,

  • 分析一:

    可以用类似矩形面积并的办法, 不过这次我们不乘高, 不算面积罢了.
    需要注意的是, 由于周长的线会被重复覆盖, 我们每次需要和上一次的作差.
    但是这样仅仅是 x 轴的, 不过我可以再 y 轴做一次加起来就可以了

  • 演示 x 轴求长度和的部分
    矩形面积并、矩形面积交、矩形周长并(线段树、扫描线总结)_第3张图片

  • 代码一:

//
//  Created by TaoSama on 2015-07-15
//  Copyright (c) 2015 TaoSama. All rights reserved.
//
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
#define pr(x) cout << #x << " = " << x << "  "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e4 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;

int n, m[2];
int sum[N << 2], cnt[N << 2], all[2][N];
struct Seg {
    int l, r, h, d;
    Seg() {}
    Seg(int l, int r, int h, int d): l(l), r(r), h(h), d(d) {}
    bool operator< (const Seg& rhs) const {return h < rhs.h;}
} a[2][N];

#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1

void push_up(int p, int l, int r, int rt) {
    if(cnt[rt]) sum[rt] = all[p][r + 1] - all[p][l];
    else if(l == r) sum[rt] = 0;
    else sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}

void update(int p, int L, int R, int v, int l, int r, int rt) {
    if(L <= l && r <= R) {
        cnt[rt] += v;
        push_up(p, l, r, rt);
        return;
    }

    int m = l + r >> 1;
    if(L <= m) update(p, L, R, v, lson);
    if(R > m) update(p, L, R, v, rson);
    push_up(p, l, r, rt);
}

int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt","w",stdout);
#endif
    ios_base::sync_with_stdio(0);

    while(scanf("%d", &n) == 1) {
        for(int i = 1; i <= n; ++i) {
            int x1, y1, x2, y2;
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            all[0][i] = x1, all[0][i + n] = x2;
            all[1][i] = y1, all[1][i + n] = y2;
            a[0][i] = Seg(x1, x2, y1, 1);
            a[0][i + n] = Seg(x1, x2, y2, -1);
            a[1][i] = Seg(y1, y2, x1, 1);
            a[1][i + n] = Seg(y1, y2, x2, -1);
        }
        n <<= 1;
        sort(all[0] + 1, all[0] + 1 + n);
        m[0] = unique(all[0] + 1, all[0] + 1 + n) - all[0] - 1;
        sort(all[1] + 1, all[1] + 1 + n);
        m[1] = unique(all[1] + 1, all[1] + 1 + n) - all[1] - 1;
        sort(a[0] + 1, a[0] + 1 + n);
        sort(a[1] + 1, a[1] + 1 + n);

//      for(int i = 0; i < 2; ++i){
//          for(int j = 1; j <= m[i]; ++j) cout << all[i][j] <<' '; cout << endl;
//      } cout << endl;

        int ans = 0;
        for(int i = 0; i < 2; ++i) {
            int t = 0, last = 0;
            memset(cnt, 0, sizeof cnt);
            memset(sum, 0, sizeof sum);
            for(int j = 1; j <= n; ++j) {
                int l = lower_bound(all[i] + 1, all[i] + 1 + m[i], a[i][j].l) - all[i];
                int r = lower_bound(all[i] + 1, all[i] + 1 + m[i], a[i][j].r) - all[i];
                if(l < r) update(i, l, r - 1, a[i][j].d, 1, m[i], 1);
                t += abs(sum[1] - last);
                last = sum[1];
            }
            ans += t;
        }
        printf("%d\n", ans);
    }
    return 0;
}

  • 分析二:

    当然我们也可只对 x 轴做一次扫描线, 只要同时维护 y 轴竖线(就是求矩形面积并的时候的高)的个数, vtl 记录竖线的个数
    需要的注意的是竖线重合的情况, 需要再开变量 lbd,rbd 来判断重合, 避免重复计算

  • 代码二:

//
//  Created by TaoSama on 2015-07-15
//  Copyright (c) 2015 TaoSama. All rights reserved.
//
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
#define pr(x) cout << #x << " = " << x << "  "
#define prln(x) cout << #x << " = " << x << endl
const int N = 2e4 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;

int n;
int sum[N << 2], cnt[N << 2], vtl[N << 2];
bool lbd[N << 2], rbd[N << 2];
struct Seg {
    int l, r, h, d;
    Seg() {}
    Seg(int l, int r, int h, int d): l(l), r(r), h(h), d(d) {}
    bool operator< (const Seg& rhs) const {return h < rhs.h;}
} a[N];

#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1

void push_up(int l, int r, int rt) {
    if(cnt[rt]) {
        lbd[rt] = rbd[rt] = true;
        sum[rt] = r + 1 - l;
        vtl[rt] = 2;
    }
//叶子节点的下面的节点也是0 不这样也可以(那就要数组开大 小心RE)
    else if(l == r) sum[rt] = vtl[rt] = lbd[rt] = rbd[rt] = 0;
    else {
        lbd[rt] = lbd[rt << 1];
        rbd[rt] = rbd[rt << 1 | 1];
        sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
        vtl[rt] = vtl[rt << 1] + vtl[rt << 1 | 1];
        if(rbd[rt << 1] && lbd[rt << 1 | 1]) vtl[rt] -= 2; //两条线重合
    }
}

void update(int L, int R, int v, int l, int r, int rt) {
    if(L <= l && r <= R) {
        cnt[rt] += v;
        push_up(l, r, rt);
        return;
    }
    int m = l + r >> 1;
    if(L <= m) update(L, R, v, lson);
    if(R > m) update(L, R, v, rson);
    push_up(l, r, rt);
}

int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt","w",stdout);
#endif
    ios_base::sync_with_stdio(0);

    while(scanf("%d", &n) == 1) {
        int Min = 1e4, Max = -1e4;
        for(int i = 1; i <= n; ++i) {
            int x1, y1, x2, y2;
            scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
            Min = min(Min, x1);
            Max = max(Max, x2);
            a[i] = Seg(x1, x2, y1, 1);
            a[i + n] = Seg(x1, x2, y2, -1);
        }
        n <<= 1;
        sort(a + 1, a + 1 + n);

//      memset(sum, 0, sizeof sum); 所有覆盖最后都被清除了 不需要初始化了
//      memset(cnt, 0, sizeof cnt);
//      memset(lbd, false, sizeof lbd);
//      memset(rbd, false, sizeof rbd);

        int ans = 0, last = 0;
        for(int i = 1; i <= n; ++i) {
            if(a[i].l < a[i].r) update(a[i].l, a[i].r - 1, a[i].d, Min, Max - 1, 1);
            ans += vtl[1] * (a[i + 1].h - a[i].h);
            ans += abs(sum[1] - last);
            last = sum[1];
        }
        printf("%d\n", ans);
    }
    return 0;
}

你可能感兴趣的:(算法导学,数据结构,-,线段树)