- 图论- 经典最小生成树算法
左灯右行的爱情
图论算法
最小生成树算法什么是最小生成树Kruskal算法关键代码实现Prim最小生成树算法Kruskal和Prim算法的区别为什么Prim算法不需要判断成环,但Kruskal需要什么是最小生成树在图中找一棵包含图中所有节点的树,且权重和最小的那棵树就叫最小生成树.如下:右侧生成树的权重和显然比左侧生成树的权重和要小。(但是它并不是最小的,这里只是比较一下不同的树)Kruskal算法最小生成树是若干条边的集
- 图论- Dijkstra算法
左灯右行的爱情
图论算法python
Dijkstra算法前言概念BFS基础模版DijkstraDijkstra函数签名State类distTo记录最短路径伪代码模版第一个问题解答第二个问题解答第三个问题解答前言学习这个算法之间,必须要对BFS遍历比较熟悉,它的本质就是一个特殊改造过的BFS算法.概念Dijkstra算法是一种计算图中单源最短路径算法,本质上是一个经过特殊改造的BFS算法,改造点有两个:使用优先队列,而不是普通队列进行
- 图论 - 一些经典小算法思想(无题目例子)
左灯右行的爱情
图论算法java
经典小算法前言拓扑结构名流问题暴力解法优化解法二分图二分图判定思路前言主要介绍一些有意思的小算法拓扑结构简单来说,把一幅图拉平,而且这个拉平的图里面,所有的箭头方向都是一致的.比如下图所有的箭头都是朝右的.注意:如果是一副有向图存在环,无法进行拓扑排序,因为肯定做不到所有箭头方向一致;那图的拓扑结构如何实现呢?这个特别简单,首先你要先确认好建图时对边的定义!如果有向边定义为[依赖]关系:比如节点2
- 图论---最小生成树
漫漫信奥之路
图论图论算法数据结构
树是一种特殊的图,具有很多特殊的性质。生成树问题研究的是将图中的所有顶点保留,但只选择图中的部分边,得到一棵树(也就是图的生成树)的问题。最小生成树则是在这些生成树中,边权之和最小的生成树。可以使用prime算法或者kruskal算法求解最小生成树。生成树相关概念1、生成树定义在一个V个点的无向连通图中,取其中V-1条边,并连接所有的顶点,所得到的子图称为原图的一棵生成树2、树的属性树是图的一种特
- 【练习】图论
arin876
图论算法深度优先
F.FriendlyGroup图中选择一个点-1边两端点都选择+1边一个端点选择-1添加链接描述#includeusingnamespacestd;#include#includeconstintN=300010;intn,m;vectorG[N];inttemp1,temp2;boolvis[N];intnum[N];voiddfs(intu){vis[u]=1;temp1++;//点数temp
- Acwing-基础算法课笔记之搜索与图论(spfa算法)
不会敲代码的狗
Acwing基础算法课笔记图论算法笔记
Acwing-基础算法课笔记之搜索与图论(spfa算法)一、spfa算法1、概述2、模拟过程3、spfa算法模板(队列优化的Bellman-Ford算法)4、spfa算法模板(判断图中是否存在负环)一、spfa算法1、概述单源最短路径算法,处理负权边的spfa算法,一般时间复杂度为O(m)O(m)O(m),最坏为O(nm)O(nm)O(nm)。1、建立一个队列,初始化队列里只有起始点(源点);2、
- ACM- 2-SAT问题
胖亚亚
2-SAT算法总结2-SAT
前言:这篇文章是参考着饶齐的总结写出来的,但只有一些文字性的描述类似。现在有一个由N个布尔值组成的序列A,给储户一些限制关系比如A[x]ANDA[y]=0、A[x]ORA[y]ORA[z]=1等,要确定A[0...N-1]的值,使其满足所有限制关系。这个问题称为2-SAT问题特别的,若每种限制关系中最多只对两个元素进行限制,则称为2-SAT问题。由于在2-SAT问题中,最多只对两个元素进行限制,所
- 深入理解 C++ 算法之 SPFA
小白布莱克
c++算法开发语言
在图论算法的世界里,单源最短路径问题是一个经典且重要的研究方向。SPFA(ShortestPathFasterAlgorithm)算法作为求解单源最短路径问题的一种高效算法,在C++编程中有着广泛的应用。本文将深入探讨SPFA算法的原理、实现步骤以及在C++中的代码实现。SPFA算法原理SPFA算法本质上是对Bellman-Ford算法的一种优化。Bellman-Ford算法通过对所有边进行多次松
- Day 51 图论三
weixin_44647325
图论
第十一章:图论part03基础题目可以自己尝试做一做。https://www.programmercarl.com/kamacoder/0101.%E5%AD%A4%E5%B2%9B%E7%9A%84%E6%80%BB%E9%9D%A2%E7%A7%AF.html和上一题差不多,尝试自己做做https://www.programmercarl.com/kamacoder/0102.%E6%B2%8
- 图论练习题(存起来练)
Wuliwuliii
图论练习题
=============================以下是最小生成树+并查集======================================【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成
- 【HDOJ图论题集】【转】
aiyuneng5167
java人工智能
1=============================以下是最小生成树+并查集======================================2【HDU】31213HowManyTables基础并查集★41272小希的迷宫基础并查集★51325&&poj1308IsItATree?基础并查集★61856Moreisbetter基础并查集★71102ConstructingRoad
- 专题练习 图论
还是太年轻
【图论01】最短路StartTime:2018-01-0212:45:00EndTime:2018-01-2312:45:00ContestStatus:RunningCurrentSystemTime:2018-01-1214:39:34SolvedProblemIDTitleRatio(Accepted/Submitted)1001最短路51.85%(70/135)1002King46.67%
- 图论500题
Dillonh
迷之图论
PS:没找到这套题的原作者,非常感谢他的总结~最小生成树+并查集【HDU】1213HowManyTables基础并查集★1272小希的迷宫基础并查集★1325&&poj1308IsItATree?基础并查集★1856Moreisbetter基础并查集★1102ConstructingRoads基础最小生成树★1232畅通工程基础并查集★1233还是畅通工程基础最小生成树★1863畅通工程基础最小生
- 代码随想录 day62 第十一章 图论part11
TENET信条
图论python开发语言
第十一章:图论part11Floyd算法精讲Floyd算法代码很简单,但真正理解起原理还是需要花点功夫,大家在看代码的时候,会发现Floyd的代码很简单,甚至看一眼就背下来了,但我为了讲清楚原理,本篇还是花了大篇幅来讲解。https://www.programmercarl.com/kamacoder/0097.%E5%B0%8F%E6%98%8E%E9%80%9B%E5%85%AC%E5%9B%
- 【代码随想录训练营第42期 打卡总结 - 刷题记录】
逝去的秋风
代码随想录打卡总结
目录一、感受二、打卡内容数组:链表:哈希表:字符串:栈与队列:二叉树:回溯:贪心:动态规划:单调栈:图论:三、收尾一、感受先说说这两个月来代码随想录打卡刷题的感受吧。从一开始的数组二分双指针,到最后的图论最短路,难度可以说是在不断增加,但也确切感觉到了很大的收获。印象最深的就是回溯三部曲和动规五部曲了,可以说真的是让我真正理解了回溯的实现过程和动规的解题思路,受益匪浅。跟着训练营坚持打卡的这段日子
- day 59 第十一章:图论part09 dijkstra(堆优化版)精讲 Bellman_ford 算法精讲(补)
ZKang_不会过人
算法图论
任务日期:8.3题目一链接:47.参加科学大会(第六期模拟笔试)(kamacoder.com)思路:这么在n很大的时候,也有另一个思考维度,即:从边的数量出发。当n很大,边的数量也很多的时候(稠密图),那么上述解法没问题。但n很大,边的数量很小的时候(稀疏图),可以换成从边的角度来求最短路代码:#include#include#include#include#includeusingnamespa
- Day63_20250211_图论part7 prim算法|kruskal算法精讲
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论算法深度优先数据结构java
Day63_20250211_图论part7prim算法|kruskal算法精讲prim算法【维护节点的集合】题目题目描述在世界的某个区域,有一些分散的神秘岛屿,每个岛屿上都有一种珍稀的资源或者宝藏。国王打算在这些岛屿上建公路,方便运输。不同岛屿之间,路途距离不同,国王希望你可以规划建公路的方案,如何可以以最短的总公路距离将所有岛屿联通起来(注意:这是一个无向图)。给定一张地图,其中包括了所有的岛
- day51 第十一章:图论part02
mvufi
图论深度优先算法
99.岛屿数量深搜每一块的上下左右都遍历过了之后,这块陆地就遍历完了。是深搜,不是广搜深搜:递归defdfs():if.....:终止条件dfs(子节点)directions=[[0,1],[1,0],[0,-1],[-1,0]]defdfs(grid,visited,x,y):ifgrid[x][y]==0orvisited[x][y]:returnvisited[x][y]=Trueforii
- Day60_补20250208_图论part5_并查集理论基础|寻找存在的路径
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论java算法动态规划数据结构leetcode开发语言
Day60_20250208_图论part5_并查集理论基础|寻找存在的路径并查集理论基础明确并查集解决什么问题,代码如何写并查集作用:解决连通性问题。【当我们需要判断2个元素是否在同一个集合里的时候,要想到使用并查集】功能将2个元素添加到1个集合中判断2个元素在不在同一个结合原理将3个元素放在同一个集合里A,B,C连通,一维数组,father[A]=B;father[B]=C,因此A和B和C连通
- Day59_20250207_图论part4_110.字符串接龙|105.有向图的完全可达性|106.岛屿的周长
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论算法java动态规划笔记数据结构开发语言
Day59_20250207_图论part4_110.字符串接龙|105.有向图的完全可达性|106.岛屿的周长110.字符串接龙题目题目描述字典strList中从字符串beginStr和endStr的转换序列是一个按下述规格形成的序列:序列中第一个字符串是beginStr。序列中最后一个字符串是endStr。每次转换只能改变一个字符。转换过程中的中间字符串必须是字典strList中的字符串。给你
- Day58_20250206_图论part3_101.孤岛的总面积|102.沉没孤岛|103.水流问题|104.建造最大岛屿
Yoyo25年秋招冲冲冲
代码随想录刷题记录图论深度优先算法数据结构javaleetcode动态规划
Day58_20250206_图论part3_101.孤岛的总面积|102.沉没孤岛|103.水流问题|104.建造最大岛屿101.孤岛的总面积题目题目描述给定一个由1(陆地)和0(水)组成的矩阵,岛屿指的是由水平或垂直方向上相邻的陆地单元格组成的区域,且完全被水域单元格包围。孤岛是那些位于矩阵内部、所有单元格都不接触边缘的岛屿。现在你需要计算所有孤岛的总面积,岛屿面积的计算方式为组成岛屿的陆地的
- 每日一知识:图的遍历算法(bfs+dfs),javascript实现
程序猿阿嘴
前端javascript每日一知识算法深度优先宽度优先
什么是图?在计算机中,图结构也是一种非常常见的数据结构。图论也是一个非常大的话题图结构是一种与树结构有些相似的数据结构。图论是数学的一个分支,并且,在数学的概念上,树是图的一种。图主要研究的目的是事物之间的关系,顶点代表事物,边代表两个事物间的关系。图在生活中的应用场景:人与人之间的关系(比如六度空间理论),地点之间的联系图(地图App,就是通过图来计算最短路径或最优路径)图的特点一组顶点:通常用
- 基于Dijkstra算法的最短路径求解与应用解析
徐浪老师
徐浪老师大讲堂算法服务器前端
标题:基于Dijkstra算法的最短路径求解与应用解析一、引言最短路径问题是图论中的一个经典问题,广泛应用于交通导航、网络路由、地图定位等多个领域。解决最短路径问题,能够帮助我们找到从一个起点到一个终点的最短路径,通常以路径的长度或权值总和为度量。在图的加权边上,最短路径问题尤其重要。Dijkstra算法作为解决单源最短路径问题的经典算法,以其较低的计算复杂度和稳定性,在实践中得到了广泛应用。Di
- 信息学奥赛一本通 2101:【23CSPJ普及组】旅游巴士(bus) | 洛谷 P9751 [CSP-J 2023] 旅游巴士
君义_noip
CSP/NOIP真题解答信息学奥赛一本通题解洛谷题解算法动态规划信息学奥赛
【题目链接】ybt2101:【23CSPJ普及组】旅游巴士(bus)洛谷P9751[CSP-J2023]旅游巴士【题目考点】1.图论:求最短路Dijkstra,SPFA2.动态规划3.二分答案4.图论:广搜BFS【解题思路】解法1:Dijkstra堆优化每个地点是一个顶点,每条道路是一条边,道路只能单向通行,该图是有向图。通过每条边用时都是1单位时间,那么该图是无权图。每条道路都有开放时刻a,也就
- 搜索与图论-------DFS与BFS与拓扑排序
尉迟黎烨
图论深度优先宽度优先
一.深度优先搜索(基于栈)适用:既可以在无向图中也可以在有向图思路:从根节点出发,每次遍历他的第一个孩子节点直到遍历到叶子节点,再退回到他的父亲节点,接着遍历父亲节点的其他孩子节点,如此重复,直到遍历完所有的节点。核心代码:intdfs(intu){ st[u]=true;//st[u]表示点u已经被遍历过 for(inti=h[u];i!=-1;i=ne[i]) { in
- 图论- DFS/BFS遍历
左灯右行的爱情
图论深度优先宽度优先
DFS/BFS遍历深度优先搜素(DFS)Vertex模版-遍历所有节点为什么成环会导致死循环呢临接矩阵和临接表版-遍历所有节点遍历所有路径-临接矩阵和临接表版广度优先搜索(BFS)不记录遍历步数的需要记录遍历步数的需要适配不同权重边的深度优先搜素(DFS)Vertex模版-遍历所有节点//多叉树节点classNode{intval;Listchildren;}//多叉树的遍历框架voidtrave
- 利用Python进行社交网络分析和图论算法实现
步入烟尘
python算法图论
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- spfa判负环
Tom Marvolo
算法基础·搜索与图论·最短路
大雪菜的课(笔记)搜索与图论(二)1.最短路(5).spfa判负环模板(spfa判断图中是否存在负环——模板题AcWing852.spfa判断负环)时间复杂度是O(nm)O(nm),nn表示点数,mm表示边数intn;//总点数inth[N],w[N],e[N],ne[N],idx;//邻接表存储所有边intdist[N],cnt[N];//dist[x]存储1号点到x的最短距离,cnt[x]存储
- 图论 —— SPFA 模板
努力的老周
OI笔记算法模板笔记图论算法数据结构SPFA算法
概述本文使用优先队列优化的SPFA算法。时间复杂度一般为O(m)O(m)O(m),最坏为O
- 图论——spfa判负环
0x7F7F7F7F
图论算法
负环图GGG中存在一个回路,该回路边权之和为负数,称之为负环。spfa求负环方法1:统计每个点入队次数,如果某个点入队n次,说明存在负环。证明:一个点入队n次,即被更新了n次。一个点每次被更新时所对应最短路的边数一定是递增的,也正因此该点被更新n次那么该点对应的的最短路长度一定大于等于n,即路径上点的个数至少为n+1。根据抽屉原理,路径中至少有一个顶点出现两次,也就是路径中存在环路。而算法保证只有
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。