连续特征离散化的好处

在实现某些算法时,只看到结论说有的连续特征需要离散化,离散化后效果会更好,巴拉巴拉。。。但是为什么要离散化还一直是云里雾里,今天特意研究了一下,记录如下:

1. 离散特征的增加和减少都很容易,易于模型的快速迭代;

2. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;

3. 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;

4. 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;

5. 离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;

6. 特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;

7. 特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

引用知乎上一个作者的回答,

李沐曾经说过:模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。通常来说,前者容易,而且可以n个人一起并行做,有成功经验;后者目前看很赞,能走多远还须拭目以待。


你可能感兴趣的:(数据挖掘)