R语言实用案例分析-相关系数的应用

在日常工作中,经常会存在多个变量之间存在关联关系,比如学习数学好的同学,物理成绩可能也比较高。在公司中外貌和讨人喜欢的关系往往也比较大,在人事招聘过程中,如果想要更加综合的评价某个人,需要把相关系数比较高的方面进行权重或者均值处理。


如以下案例:

现有30名应聘者来公司应聘,公司为这些应聘者制定了15项指标,分别是:求职信的形式(FL)、外貌(APP)、专业能力(AA)、讨人喜欢(LA)、自信心(SC)、洞察力(LC)、诚实(HON)、推销能力(SMS)、经验(EXP)、驾驶水平(DRV)、事业心(AMB)、理解能力(POT)、交际能力(KJ)和适应性(SUIT)。每项分数是从0到10分,0分最低,10分最高。每位求职者的15项指标如下所示,公司计划只录取前5名申请者,公司到底该如何选择呢?


#读入数据

rt<-read.table("applicant.data")
AVG<-apply(rt,1,mean)

sort(AVG,descreasing=TRUE)


attach(rt)

#找到相关系数高的分为一组,然后取平均值,防止值过大
rt$G1<-(SC+LC+SMS+DRV+AMB+GSP+POT)/7

rt$G2<-(FL+EXP+SUIT)/3

rt$G3<-(LA+HON+KJ)/3

rt$G4<-AA

rt$G5<-APP

AVG<-apply(rt[,16:20], 1, mean)

sort(AVG, decreasing = TRUE)


找出前5名




你可能感兴趣的:(R语言案例分析)