大津二值化算法(Otsu‘s Method)及python算法实现

1.算法原理:

  • otsu 大津算法是一种图像二值化算法,作用是确定将图像分成黑白两个部分的阈值。将图像背景和前景分成黑白两类很好理解,但是如何确定背景和前景的二值化界限(阈值)呢?对于不同的图像,这个阈值可能不同,这就需要有一种算法来根据图像的信息自适应地确定这个阈值。

  • 首先,需要将图像转换成灰度图像,255个灰度等级。可以将图像理解成255个图层,每一层分布了不同的像素,这些像素垂直叠加合成了一张完整的灰度图。我们的目的就是找到一个合适的灰度值,大于这个值的我们将它称之为背景(灰度值越大像素越黑),小于这个值的我们将它称之为前景(灰度值越小像素越白)。怎么确定这个值就是我们想要的值呢?

  • 这里引入方差的概念,方差越大,相关性越低,黑白越分明。我们将每一个灰度值之上下之间的像素的方差求出来不就行了吗?找到方差最大的那个灰度值,那个就是我们想要的二值化分隔阈值。

先定义几个符号代表的意义:
h:图像的宽度
w:图像的高度(h*w 得到图像的像素数量)

t :灰度阈值(我们要求的值,大于这个值的像素我们将它的灰度设置为255,小于的设置为0)
n0:小于阈值的像素,前景
n1:大于等于阈值的像素,背景
n0 + n1 == h * w

w0:前景像素数量占总像素数量的比例
w0 = n0 / (h * w)

w1:背景像素数量占总像素数量的比例
w1 = n1 / (h * w)
w0 + w1 == 1

u0:前景平均灰度
u0 = n0灰度累加和 / n0
u1:背景平均灰度
u1 = n1灰度累加和 / n1

u:平均灰度
u = (n0灰度累加和 + n1灰度累加和) / (h * w) 根据上面的关系
u = w0 * u0 + w1 * u1

g:类间方差(那个灰度的g最大,哪个灰度就是需要的阈值t)
g = w0 * (u0 - u)^2 + w1 * (u1 - u)^2
根据上面的关系,可以推出:(这个一步一步推导就可以得到)
g = w0 * w1 * (u0 - u1) ^ 2

然后,遍历每一个灰度值,找到这个灰度值对应的 g,找到最大的 g 对应的 t。

2.代码实现

import cv2
import numpy as np
#灰度化
def BGR2GRAY(img):
    b = img[:,:,0].copy()
    g = img[:,:,1].copy()
    r = img [:,:,2].copy()
    gray_img = 0.2126*r+0.7152*g+0.0722*b
    gray_img = gray_img.astype(np.uint8)
    return gray_img
#大津二值化算法
def otsu(gray_img):
    h = gray_img.shape[0]
    w = gray_img.shape[1]
    threshold_t = 0
    max_g = 0
    #遍历每一个灰度层
    for t in range(255):
        #使用numpy直接对数组进行计算
        n0 = gray_img[np.where(gray_img < t)]
        n1 = gray_img[np.where(gray_img>=t)]
        w0 = len(n0)/(h*w)
        w1 = len(n1)/(h*w)
        u0 = np.mean(n0) if len(n0)>0 else 0
        u1 = np.mean(n1) if len(n1)>0 else 0
    
        g = w0*w1*(u0-u1)**2
        if g > max_g :
            max_g = g
            threshold_t = t
    print ('类间方差最大阈值:',threshold_t)
    gray_img[gray_img<threshold_t] = 0
    gray_img[gray_img>threshold_t] = 255
    return gray_img
#这里直接将数据转换成float32了,方便后续计算
img = cv2.imread('full.jpg').astype(np.float32)
gray_img = BGR2GRAY(img) 
otsu_img = otsu(gray_img)
cv2.imshow('otsu_img',otsu_img)
cv2.waitKey(0)#等待3000ms=3s
cv2.destroyAllWindows()

参考连接:https://zhuanlan.zhihu.com/p/95034826

你可能感兴趣的:(经典图像处理)