import matplotlib.pyplot as plt
from sklearn.datasets import make_circles
n_samples = 800
X, y = make_circles(n_samples=n_samples, noise=0.1, random_state=1, factor=0.6)
plt.scatter(X[:, 0], X[:, 1], c=y)
import torch
import torch.nn.functional as F
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_hidden2, n_output):
super().__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.hidden2 = torch.nn.Linear(n_hidden, n_hidden2)
self.out = torch.nn.Linear(n_hidden2, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = torch.sigmoid(self.hidden2(x))
x = self.out(x)
x = F.softmax(x, dim=1)
return x
net = Net(n_feature=2, n_hidden=20, n_hidden2=20, n_output=2)
print(net)
# net = torch.nn.Sequential(
# torch.nn.Linear(2, 10),
# torch.nn.ReLU(),
# torch.nn.Linear(10,10),
# torch.nn.Sigmoid(),
# torch.nn.Linear(10,2),
# torch.nn.Softmax(1)
# )
Net(
(hidden): Linear(in_features=2, out_features=10, bias=True)
(out): Linear(in_features=10, out_features=2, bias=True)
)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
loss_func = torch.nn.CrossEntropyLoss()
x = torch.FloatTensor(X)
y = torch.LongTensor(y)
plt.ion()
for t in range(1000):
out = net(x)
loss = loss_func(out, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if t % 25 == 0:
plt.cla()
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=20)
accuracy = sum(pred_y == target_y)/800.
plt.text(-0.3, 0.1, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
plt.text(-0.3, 0.3, 'Loss=%.2f' % loss, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.text(-0.3,-0.1,'job ended', fontdict={'size': 20, 'color': 'blue'})
plt.pause(3)
plt.ioff()