这篇博客是我摘取网上比较好的博客段落摘取而成的,希望可以让所有人都能看懂,博客出处会在后文贴上~
1,有些人可能不知道为什么会奇异局势为什么一定会赢,这一篇博客很详细很清楚的讲解了这个原理
问题:首先有两堆石子,博弈双方每次可以取一堆石子中的任意个,不能不取,或者取两堆石子中的相同个。先取完者赢。
分析:首先我们根据条件来分析博弈中的奇异局势
第一个(0 , 0),先手输,当游戏某一方面对( 0 , 0)时,他没有办法取了,那么肯定是先手在上一局取完了,那么输。
第二个 ( 1 , 2 ),先手输,先手只有四种取法,
1)取 1 中的一个,那么后手取第二堆中两个。
2)取 2 中一个,那么后手在两堆中各取一个。
3)在 2 中取两个,那么后手在第一堆中取一个。
4)两堆中各取一个,那么后手在第二堆中取一个。
可以看出,不论先手怎么取,后说总是能赢。所以先手必输!
第三个 ( 3 , 5 ),先手必输。首先先手必定不能把任意一堆取完,如果取完了很明显后手取完另一堆先手必输,那么
假如看取一堆的情况,假设先手先在第一堆中取。 取 1 个,后手第二堆中取4个,变成(1 ,2)了,上面分析了是先手的必输局。
取 2 个,后手第二堆中取3个,也变成( 1 , 2)局面了。
假设先手在第二堆中取,取 1 个,那么后手在两堆中各取 2 个,也变成 ( 1 , 2 )局面了。
取 2 个 ,那么后手可以两堆中都去三个, 变成 ( 0 , 0)局面,上面分析其必输。
取 3 个,后手两堆各取 1 个 ,变成( 1 , 2)局面了。
取 4 个,后手在第一堆中取一个,变成( 1 , 2)局面了。
可见不论先手怎么取,其必输!
第四个(4 , 7),先手必输。
自己推理可以发现不论第一次先手如何取,那么后手总是会变成前面分析过的先手的必输局面。
那么到底有什么规律没有呢,我们继续往下写。
第四个 ( 6 ,10 )
第五个 ( 8 ,13)
第六个 ( 9 , 15)
第七个 ( 11 ,18)
会发现他们的差值是递增的,为 0 , 1 , 2, 3, 4 , 5 , 6, 7.....n
而用数学方法分析发现局面中第一个值为前面局面中没有出现过的第一个值,比如第三个局面,前面出现了 0 1 2,那么第三个局面的第一个值为 3 ,比如第五个局面,前
面出现了 0 1 2 3 4 5 ,那么第五个局面第一个值为6。
再找规律的话我们会发现,第一个值 = 差值 * 1.618
而1.618 = (sqrt(5)+ 1) / 2 。
大家都知道0.618是黄金分割率。而威佐夫博弈正好是1.618,这就是博弈的奇妙之处!
下面来看看威佐夫博弈常见的三类问题:
1)给你一个局面,让你求是先手输赢。
有了上面的分析,那么这个问题应该不难解决。首先求出差值,差值 * 1.618 == 最小值 的话后手赢,否则先手赢。(注意这里的1.618最好是用上面式子计算出来的,否则精
度要求高的题目会错)
2)给你一个局面,让你求先手输赢,假设先手赢的话输出他第一次的取法。
首先讨论在两边同时取的情况,很明显两边同时取的话,不论怎样取他的差值是不会变的,那么我们可以根据差值计算出其中的小的值,然后加上差值就是大的一个值,当然能取的条件是求出的最小的值不能大于其中小的一堆的石子数目。假如在一堆中取的话,可以取任意一堆,那么其差值也是不定的,但是我们可以枚举差值,差值范围是0 --- 大的石子数目,然后根据上面的理论判断满足条件的话就是一种合理的取法。
2.关于上述的描述更系统的补充
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有
如下三条性质:
1。任何自然数都包含在一个且仅有一个奇异局势中。
由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak
-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。
2。任意操作都可将奇异局势变为非奇异局势。
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其
他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由
于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3。采用适当的方法,可以将非奇异局势变为奇异局势。 //这里就是前面那篇博客先手赢
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了
奇异局势(0,0);如果a = ak ,b > bk,那么,取走b – bk个物体,即变为奇异局
势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak – ab + ak个物体,变为奇异局
势( ab – ak , ab – ak+ b – ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余
的数量a – ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k)
,从第二堆里面拿走 b – bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b – a
j 即可。
百度百科:
1。任何自然数都包含在一个且仅有一个奇异局势中。
由于ak是未在前面出现过的最小自然数,所以有a[k] > a[k-1] ,而 bk= a[k] + k > a[k-1] + k > a[k-1] + k - 1 = b[k-1] > a[k-1] 。所以性质1成立。
2。任意操作都可将奇异局势变为非奇异局势。
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3。采用适当的方法,可以将非奇异局势变为奇异局势。
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk 那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk 则同时从两堆中拿走a-a[b-a] 个物体变为奇异局势( a[b-a], b-a+a[b-a]);如果a > ak ,b= ak + k 则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k)从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k)从第二堆里面拿走 b - aj 即可。
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜
;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近
似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[
j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1
+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。
3. 百度百科的定理
定理 0:一个状态是必败态,当且仅当它的所有后继状态都是必胜态;而一个状态是必胜态,只要它的后继状态有一个以上的必败态即可。
证明略去。
容易发现下面的定理:
定理 1:(a,b) 和 (b, a) 的胜负性是相同的(a <> b)。
证明:如果 (a, b) 是必胜态,那么将必胜策略中所有的操作,对第一堆的变为第二堆,对第二堆的变为第一堆,就构成 (b, a) 的必胜策略
定理 2:若 (a, b) 是必败态,则对于所有的 x <> a 和 y <> b,(x, b) 和 (a, y) 是必胜态。
证明:
对于 x > a 和 y > b,不管是哪一种情况,总可以从 x 堆或 y 堆中取出一定量的石子使当前状态变为必败态 (a, b),由定理 1,(x, b) 和 (a, y) 为必胜态。
对于 x < a 和 y < b,不管是哪一种情况,如果 (x, b) 或 (a, y) 是必败态的话,由上述可得 (a, b) 是必胜态,矛盾。故 (x, b) 和 (a, y) 均为为必胜态。
定理 3: 若 (a, b) 是必败态,则对于所有的 d > 0,(a + d, b + d) 是必胜态。
证明:
与定理 2 类似。
定理 4:在所有的必败态中,每个数字恰巧出现一次。
证明:
有了定理 1,对于对称的状态我们只需要处理其中一个,而两个数不会相同(相同的状态必然是必胜态),于是我们把每个状态中较小的数字放在前面,每行写一个状态,去掉括号并按照升序排列每行的第一个数,就构成了如下的矩阵:
1 2
3 5
4 7
6 10
……
假设数字k在矩阵中出现两次或两次以上,则有(k,a),(k,b)都为必败态,与定理2矛盾。
假设数字k为序列中没有出现且值最小的数字,则有 (k,k+i)为必胜态(i>0),则对任意i,必然存在j(0
根据鸽巢原理,必然存在3个i的取值(其实是无穷多个,j只有k-1种取值,而i有无数种)记为i
1, i
2, i
3使得j
1=j
2=j
3=m。对这3个i,同样必然存在一对i,不妨为(i
1,i
2),使(k-m,k+i
1-m)且(k-m,k+i
2-m)必败或f(k-m,k+i
1)且f(k-m,k+i
2)必败。显然与定理2矛盾,因此不存在这样的数k。
观察这个矩阵,我们又可以得到新的定理:
定理 5:矩阵中每行第一个数恰巧是前面每一行中没有出现过的最小正整数。
证明:
由定理 4,矩阵中每个数字恰巧出现一次,而按照这个矩阵的定义,第二列的数总比同行第一列大,第一列又按照升序排列,所以每一行的第一个数正好为前面每一行中没有出现过的最小正整数。
定理 6:矩阵第 i 行的第二个数正好为第一个数加上 i
证明:
用数学归纳法。
1) 对于第一行显然成立
2) 若对于前 i - 1 行均成立,则所有的 (a[p], a[p] + p) (a[p] 为第 p 行第一个数,p < i) 均为必败态,那么考察第 i 行的状态 (a[i], a[i] + delta)。容易看出 delta >= i,因为如果 delta < i,一定可以通过一次操作变为前面出现过的必败态,那么这个状态就是必胜态。下面由 delta >= i,我们来说明 delta = i。
首先,我们考虑从第一堆中取出 p 个石子,得到状态 (a[i] - p, a[i] - p + delta),由定理 5,比 a[i] 小的数都在之前出现过,若 a[i] - p 出现在某一行的第一列,由于存在必败态 (a[i] - p, a[i] - p + d) (d < delta),故 (a[i] - p, a[i] - p + delta) 一定为必胜态(定理 2);若 a[i] - p 出现在某一行的第二列,由于第一列是单增的,因而其对应的第一列数必小于 a[i] + delta,故而也可推出其状态为必胜态。
对于从两堆石子中取出相同数目的情况与之类似,容易看出一定为必胜态。
于是,(a[i], a[i] + delta) 状态的胜负性只与状态 (a[i], a[i] + d) (d < delta) 有关。不难看出,delta = i 时恰为必败态,因为不论从第二堆中取出多少个石子,作为另一堆的第一堆石子并没有在之前出现过,所以得到的一定是一个必胜态,因而 (a[i], a[i] + delta) 为必败态,由定理 2 及定理 4 可得,原命题成立。即矩阵中第 i 行第二列的数等于同行第一列的数加上 i。
这时,我们所有的问题都转化到了矩阵上,只要能通过合适的方法表示出这个矩阵,我们就可以很好地解决原问题。
下面的过程可能需要比较高的数学技巧,首先给出我们需要的一个重要定理([x] 表示 x 的整数部分,{x} 表示 x 的小数部分,即 {x} = x - [x]):
定理 7(Betty 定理):如果存在正无理数 A, B 满足 1/A + 1/B = 1,那么集合 P = { [At], t
证明:详见Betty定理。
考虑到 Betty 定理中“恰为 Z
于是我们得到每一行第二列的数为 [
我们的目的是要让 Z
于是应用 Betty 定理,我们得到最终我们需要的定理:
定理 8:上述矩阵中每一行第一列的数为 [
证明:由 Betty 定理显然得证。
设a、b是正 无理数且 1/a +1/b =1。记P={ 【na】 | n为任意的 正整数},Q={ 【nb】 | n 为任意的正整数},则P与Q是Z+的一个划分,即P∩Q为空集且P∪Q为正整数集合Z+。
证明:因为a、b为正且1/a +1/b=1,则a、b>1,所以对于不同的整数n,【na】各不相同,类似对b有相同的结果。因此任一个整数至多在集合P或Q中出现一次。
* 现证明P∩Q为空集;( 反证法)假设k为P∩Q的一个整数,则存在正整数m、n使得【ma】=【nb】=k。即k < ma、nb
* m/(k+1)< 1/a < m/k及n/(k+1)< 1/b < n/k。相加起来得 (m+n)/(k+1) < 1 < (m+n)/k,即 k < m+n < k+1。这与m、n为整数有 矛盾,所以P∩Q为空集。现证明Z+=P∪Q;已知P∪Q是Z+的 子集,剩下来只要证明Z+是P∪Q的子集。(反证法)假设Z+\(P∪Q)有一个元素k,则存在正整数m、n使得【ma】< k <【(m+1)a】、【nb】< k <【(n+1)b】。 由此得ma < k ≦【 (m+1)a】-1<(m+1)a -1,类似地有nb < k ≦【 (n+1)b】-1<(n+1)b -1。等价地改写为 m/k < 1/a < (m+1)/(k+1)及n/k < 1/b < (n+1)/(k+1)。两式加起来,得
(m+n)/k < 1 < (m+n+2)/(k+1),即m+n < k < k+1 < m+n+2。这与m, n, k皆为正整数矛盾。所以Z+=P∪Q。
结论:
编辑
两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618...因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],
那么a = aj,bj = aj + j,若不等于,那么a = aj+1,b = aj + j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
摘取自:
http://blog.csdn.net/y990041769/article/details/21694007
http://blog.csdn.net/qq_34374664/article/details/52744159
http://baike.baidu.com/link?url=xxaAic8pHCFpAeFYsY2ac6h0rL-3D70U7R6InfX9PAwqioSb8VWWkf66-23HYZmrn2jqZ6fmez3SpGmTS19IjAbb9KYhJpWapY8Glk0rXxr8FhVVd4RDfZBwJg-V42lWRYqH1rEFqT9jK8KfXJi5ka