数据库主键是自增好还是UUID好,分布式环境下如何保证主键的唯一性

自增主键和UUID主键的优缺点及适用场景

我们首先考虑效率和存储空间,然后再考虑安全和分布式

使用自增主键

优点:

1、数据存储空间小

2、查询效率高

缺点:

1、如果数据量过大,会超出自增长的值范围

2、分布式存储的表操作,尤其是在合并的时候操作复杂

3、安全性低,因为是有规律的,如果恶意扒取用户信息会很容易,如果是单据编号使用,竞争对手会容易查询出货量

使用UUID主键

优点:

1、出现重复的机会少

2、适合大量数据的插入和更新操作,尤其是在高并发和分布式环境下

3、安全性较高

缺点:

1、存储空间大(16 byte),因此它将会占用更多的磁盘空间, MySQL官方有明确的建议主键要尽量越短越好,36个字符长度的UUID不符合要求

2、性能降低,对MySQL索引不利: 如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。

适用场景

1、项目是单机版的,并且数据量比较大(百万级)时,用自增长的,此时最好能考虑下安全性,做些安全措施

2、项目是单机版的,并且数据量没那么大,对速度和存储要求不高时,用UUID

3、项目是分布式的,那么首选UUID,分布式一般对速度和存储要求不高

4、项目是分布式的,并且数据量达到千万级别可更高时,对速度和存储有要求时,可以用自增长。


分布式环境下保证主键的唯一性

目前两种解决方式,下面分别介绍:

Twitter-Snowflake 64位自增id算法

背景:

Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器产生的id必须不同

Snowflake算法核心

时间戳 + 工作机器id + 序列

Snowflake ID有64bits长 由如图4部分组成:

  • 第一位不可用
  • 第二组 timestamp—41bits 使用41位时间戳,精确到毫秒,意味着其可以表示长达(2^41-1)/(1000360024*365)=139.5年,另外使用者可以自己定义一个开始纪元(epoch),然后用(当前时间-开始纪元)算出time,这表示在time这个部分在140年的时间里是不会重复的,另外这里用time还有一个很重要的原因,就是可以直接更具time进行排序,对于twitter这种更新频繁的应用,时间排序就显得尤为重要了。
  • machine id—10bits(工作机器id),该部分其实由datacenterId和workerId两部分组成,这两部分是在配置文件中指明的:

10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId

1、datacenterId,方便搭建多个生成uid的service,并保证uid不重复,比如在datacenter0将机器0,1,2组成了一个生成uid的service,而datacenter1此时也需要一个生成uid的service,从本中心获取uid显然是最快最方便的,那么它可以在自己中心搭建,只要保证datacenterId唯一。如果没有datacenterId,即用10bits,那么在搭建一个新的service前必须知道目前已经在用的id,否则不能保证生成的id唯一,比如搭建的两个uid service中都有machine id为100的机器,如果其server时间相同,那么产生相同id的情况不可避免。

2、workerId是实际server机器的代号,最大到32,同一个datacenter下的workerId是不能重复的。它会被注册到consul上,确保workerId未被其他机器占用,并将host:port值存入,注册成功后就可以对外提供服务了。

  • sequence id —12bits(序列号),该id可以表示4096个数字,它是在time相同的情况下,递增该值直到为0,即一个循环结束,此时便只能等到下一个ms到来,一般情况下4096/ms的请求是不太可能出现的,所以足够使用了。

源码

/**
 * Twitter_Snowflake
* SnowFlake的结构如下(每部分用-分开):
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号
* 加起来刚好64位,为一个Long型。
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。 */ public class SnowflakeIdWorker { // ==============================Fields=========================================== /** 开始时间截 (2015-01-01) */ private final long twepoch = 1420041600000L; /** 机器id所占的位数 */ private final long workerIdBits = 5L; /** 数据标识id所占的位数 */ private final long datacenterIdBits = 5L; /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */ private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大数据标识id,结果是31 */ private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位数 */ private final long sequenceBits = 12L; /** 机器ID向左移12位 */ private final long workerIdShift = sequenceBits; /** 数据标识id向左移17位(12+5) */ private final long datacenterIdShift = sequenceBits + workerIdBits; /** 时间截向左移22位(5+5+12) */ private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */ private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作机器ID(0~31) */ private long workerId; /** 数据中心ID(0~31) */ private long datacenterId; /** 毫秒内序列(0~4095) */ private long sequence = 0L; /** 上次生成ID的时间截 */ private long lastTimestamp = -1L; //==============================Constructors===================================== /** * 构造函数 * @param workerId 工作ID (0~31) * @param datacenterId 数据中心ID (0~31) */ public SnowflakeIdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } // ==============================Methods========================================== /** * 获得下一个ID (该方法是线程安全的) * @return SnowflakeId */ public synchronized long nextId() { long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常 if (timestamp < lastTimestamp) { throw new RuntimeException( String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } //如果是同一时间生成的,则进行毫秒内序列 if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; //毫秒内序列溢出 if (sequence == 0) { //阻塞到下一个毫秒,获得新的时间戳 timestamp = tilNextMillis(lastTimestamp); } } //时间戳改变,毫秒内序列重置 else { sequence = 0L; } //上次生成ID的时间截 lastTimestamp = timestamp; //移位并通过或运算拼到一起组成64位的ID return ((timestamp - twepoch) << timestampLeftShift) // | (datacenterId << datacenterIdShift) // | (workerId << workerIdShift) // | sequence; } /** * 阻塞到下一个毫秒,直到获得新的时间戳 * @param lastTimestamp 上次生成ID的时间截 * @return 当前时间戳 */ protected long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } /** * 返回以毫秒为单位的当前时间 * @return 当前时间(毫秒) */ protected long timeGen() { return System.currentTimeMillis(); } //==============================Test============================================= /** 测试 */ public static void main(String[] args) { SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0); for (int i = 0; i < 1000; i++) { long id = idWorker.nextId(); System.out.println(Long.toBinaryString(id)); System.out.println(id); } } } 复制代码

参考文章

数据库主键到底是用自增长(INT)好还是UUID好?
www.yyjjssnn.cn/articles/75…

Twitter-Snowflake,64位自增ID算法详解
www.jianshu.com/p/54a87a7c3…

Snowflake 源码github地址
github.com/twitter-arc…

Twitter的分布式自增ID算法snowflake (Java版)
www.cnblogs.com/relucent/p/…

Leaf——美团点评分布式ID生成系统
tech.meituan.com/MT_Leaf.htm…

转载于:https://juejin.im/post/5c32a7a86fb9a049ad7734b3

你可能感兴趣的:(数据库主键是自增好还是UUID好,分布式环境下如何保证主键的唯一性)