- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 深度神经网络课程设计:从理论到实践
Vita Libre
本文还有配套的精品资源,点击获取简介:深度神经网络是深度学习预测的核心技术,本课程设计项目旨在教授学生如何构建和应用深度神经网络进行各种预测任务,包括图像识别和自然语言处理。学生将通过源代码示例学习从网络架构设计、数据预处理到模型训练与评估的完整流程,并掌握深度学习的基本概念、组件及技巧。1.深度神经网络定义和在深度学习预测中的角色深度神经网络(DeepNeuralNetworks,DNNs)是深
- LSTM 论文(Hochreiter & Schmidhuber, 1997)精读(三)
文章:SeppHochreiter,JürgenSchmidhuber;LongShort-TermMemory.NeuralComput1997;9(8):1735–1780.doi:https://doi.org/10.1162/neco.1997.9.8.1735第2节PreviousWork(已有研究),这是论文对以往方法的一个评述,总结了已有递归神经网络在面对时间序列学习、尤其是长时依赖
- 结构方程模型(SEM)高阶应用系列
梦想的初衷~
结构方程生态环境python开发语言结构方程
结构方程模型(StructuralEquationModeling)是分析多变量间因果关系的利器,在众多学科领域具有巨大应用潜力。我们前期推出的《基于R语言结构方程模型》通过结构方程原理介绍、结构方程全局和局域估计、模型构建和调整、潜变量分析、复合变量分析及结构方程贝叶斯方法实现等一系列专题的介绍及大量案例讲解,由浅入深地系统介绍了结构方程模型的建立、拟合、评估、筛选和结果展示全过程,得到学员广泛
- SAGA——Textural Features(纹理特征)提取
竹_猗
SAGAGIS
由于课题需要(其实是条件有限),不得不使用SAGA软件进行特征提取,在经过一个星期的摸索之后,终于得到了一些成果,在此记录一下提取的过程。在第一篇的文章中已经简单介绍了SAGAGIS的相关概念以及如何使用SAGAGIS加载影像和进行分割。TexturalFeatures提取过程:(1)将影像的各个波段分别导出为单独影像(这一步是由于我是在服务器上进行,所以需要导出,软件上没有必要将每个波段都导出为
- AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。
zzywxc787
人工智能音视频大数据javaspring开发语言
AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。以下从技术融合、行业变革、职业重构三个维度展开分析,并附具体案例:一、技术融合:多模态AI的核心突破跨模态理解引擎案例:Meta的AudiovisualNeuralNetwork(AV-Wav2Vec)实现语音-唇形-场景的联合建模,语音识别错误率降低40%技术指标:跨模态
- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- 面向对象与面向过程程序设计语言:核心概念、对比分析与应用指南
咸鱼_要_翻身
C++CPython开发语言
目录一、面向过程程序设计语言(ProceduralProgramming)1、基本概念2、主要特点3、代表语言4、典型示例(C语言)5、优势6、局限性二、面向对象程序设计语言(Object-OrientedProgramming)1、基本概念2、四大核心特性3、代表语言4、典型示例(Java)5、优势6、局限性三、主要区别对比四、实际应用选择建议五、现代语言趋势一、面向过程程序设计语言(Proce
- 基于迁移学习的多视图卷积神经网络在乳腺超声自动分类中的应用
despacito,
论文精读-乳腺超声分类
BREASTCANCERCLASSIFICATIONINAUTOMATEDBREASTULTRASOUNDUSINGMULTIVIEWCONVOLUTIONALNEURALNETWORKWITHTRANSFERLEARNINGYIWANG,*,1EUNJUNGCHOI,y,1YOUNHEECHOI,*HAOZHANG,*GONGYONGJIN,yandSEOK-BUMKO*TAGGEDEND*De
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 加密的病历单(信息学奥赛一本通-T1137)
(上海)编程李老师
信息学奥赛一本通:题解目录算法c++开发语言
【题目描述】小英是药学专业大三的学生,暑假期间获得了去医院药房实习的机会。在药房实习期间,小英扎实的专业基础获得了医生的一致好评,得知小英在计算概论中取得过好成绩后,主任又额外交给她一项任务,解密抗战时期被加密过的一些伤员的名单。经过研究,小英发现了如下加密规律(括号中是一个“原文->密文”的例子)1.原文中所有的字符都在字母表中被循环左移了三个位置(dec->abz)2.逆序存储(abcd->d
- Apple SoC 图像 ISP 与 Neural Engine 联合优化案例分析:性能与质量平衡的实战经验
观熵
影像技术全景图谱:架构调优与实战接口隔离原则影像Camera
AppleSoC图像ISP与NeuralEngine联合优化案例分析:性能与质量平衡的实战经验关键词:AppleSoC、ISP优化、NeuralEngine协同、图像处理性能、DeepFusion、SmartHDR、实时推理、多核异构计算、功耗管理摘要:随着图像计算复杂度的不断提升,AppleSoC中的ISP与NeuralEngine(NE)联合优化成为提升拍照性能和图像质量的关键路径。本文结合最
- GeoServer图像发布快速入门指南
余桢钟
GeoServer图像发布快速入门指南geoserverOfficialGeoServerrepository项目地址:https://gitcode.com/gh_mirrors/ge/geoserver前言GeoServer作为一款开源的地理空间数据服务器,能够高效地发布和管理各种地理空间数据。本教程将详细介绍如何使用GeoServer发布World+Image格式的栅格数据,以Natural
- 《ONNX推理部署全解析:从基础到进阶的实用指南》
空云风语
人工智能深度学习神经网络人工智能深度学习神经网络YOLOONNX
ONNX基础入门ONNX是什么ONNX,即OpenNeuralNetworkExchange(开放神经网络交换),是一种用于表示深度学习模型的开放标准文件格式。它由Facebook和Microsoft在2017年联合开发,后来得到了NVIDIA、Intel、AWS、Google、OpenAI等众多公司的支持,旨在解决不同深度学习框架之间模型格式不兼容的问题,为模型的存储、交换和部署提供统一标准,使
- NLTK库全解析:用Python打开自然语言处理的第一把钥匙
引言你是否好奇过,手机里的智能助手是如何“听懂”你说的话?电商平台的差评分析又是怎样精准提取“物流慢”“质量差”这些关键词?这些看似神奇的自然语言处理(NLP)功能,背后都藏着一个“入门神器”——NLTK(NaturalLanguageToolkit)。作为Python生态中最经典的NLP库,NLTK就像一本“NLP百科全书”,从最基础的文本拆分到复杂的语义理解,它用简单的代码接口,带我们推开自然
- Random Erasing:计算机视觉的「隐形斗篷」——遮挡艺术的对抗学习革命
星光银河
深度学习-代表性技术主题/概念层面计算机视觉学习人工智能cnn神经网络深度学习
当ImageNet冠军模型在真实世界的遮挡面前崩溃时(识别准确率骤降38%),中科院自动化研究所2017年提出的RandomErasing技术以一纸惊艳了学界。这种在图像中随机挖洞的简单操作,让ResNet-50在Partial-iNaturalist数据集上抗遮挡能力提升4.2倍,错误率降低59%,揭示了模型鲁棒性的深层密码。️遮挡困境:视觉模型的阿喀琉斯之踵图像识别鲁棒性演化史时代技术Imag
- 什么是神经网络架构搜索(NAS, Neural Architecture Search),如何写对应的python程序代码呢
小桥流水---人工智能
算法深度学习Python程序代码神经网络架构python
一、什么是神经网络架构搜索(NAS,NeuralArchitectureSearch)神经网络架构搜索(NAS,NeuralArchitectureSearch)是一种用于自动化设计神经网络架构的技术。传统的神经网络模型架构设计通常依赖于专家经验和大量试错,而NAS通过算法自动搜索网络架构,以发现最适合特定任务的神经网络设计。NAS可以极大地减少人工调参的时间和精力,并且在某些情况下能够找到比手工
- 循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
- GNN多任务预测模型实现(二):将EXCEL数据转换为图数据
走的远一些
神经网络知识分享知识备份人工智能深度学习
目录一.引言二.加载和检查数据三.提取特征和标签四.标准化特征五.构建节点索引六.构建边及其特征七.总结八.结语一.引言在图神经网络(GraphNeuralNetworks,GNNs)的多任务学习场景中,数据预处理是至关重要的一步。尤其是当我们的数据存储在表格格式(如Excel文件)中时,如何有效地将其转换为图数据格式,是搭建GNN模型的基础。二.加载和检查数据第一步是加载数据并检查其格式。我们通
- 顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)
AI科研技术派
神经网络人工智能深度学习
图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!AAAI20241、Fine-tuningGraphNeuralNetworksbyPreservingGraphGenerativePatterns通过
- (转载)Box2D v2.3.0 用户手册中文版(第1章)-导言
Chapter1导言1.1关于Box2D是一个用于游戏的2D刚体仿真库。程序员可以在他们的游戏里使用它,它可以使物体的运动更加真实,并让游戏世界看起来更具交互性。从游戏引擎的视角来看,物理引擎就是一个程序性动画(proceduralanimation)的系统。(译注:做动画常有两种方法,一种是预先准备好动画所需的数据,比如图片,再一帧一帧地播放。另一种是以一定方法,动态计算出动画所需的数据,根据数
- 细粒度IP定位参文27(HGNN):Identifying user geolocation(2022年)
[27]F.Zhou,T.Wang,T.Zhong,andG.Trajcevski,“Identifyingusergeolocationwithhierarchicalgraphneuralnetworksandexplainablefusion,”Inf.Fusion,vol.81,pp.1–13,2022.(用层次图、神经网络和可解释的融合来识别用户的地理定位)论文地址:https://do
- 文本lint工具:textlint全面指南
包椒浩Leith
文本lint工具:textlint全面指南textlintThepluggablenaturallanguagelinterfortextandmarkdown.项目地址:https://gitcode.com/gh_mirrors/te/textlint项目介绍textlint是一款可插拔的文本和Markdown语法检查工具,专为JavaScript编写,旨在解决自然语言文本校对的难题。与专注于
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- SOTA是什么意思?
有奇妙能力吗
AI知识分享自然语言处理人工智能ai
最近看到一篇关于Transformer模型的论文,谷歌推出的BERT模型在11项NLP(naturallanguageprocessing)任务中夺得SOTA结果,引爆了整个NLP界。而Transformer是BERT取得成功的一个关键因素。谷歌的Transformer模型最早用于机器翻译任务,当时达到了SOTA效果。那么文中的SOTA效果,SOTA结果是什么意思呢?这里就来简单介绍一下定义:SO
- yolov11细节图
有人给我介绍对象吗
AI论文写作YOLOpython开发语言
C3kclassC3k(C3):"""C3kisaCSPbottleneckmodulewithcustomizablekernelsizesforfeatureextractioninneuralnetworks."""def__init__(self,c1,c2,n=
- 深度学习之基于Pytorch卷积神经网络人民币面值识别
Q1744828575
pythonpytorchplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在日常生活和商业活动中,人民币面值识别技术具有重要的应用价值。传统的面值识别方法,如基于模板匹配或特征工程的方法,在面对复杂多变的图像环境时,往往难以达到理想的识别效果。随着深度学习技术的兴起,特别是卷积神经网络(ConvolutionalNeuralNetwo
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号