基于python对淘宝模特个人信息进行筛选爬取,数据清洗,持久化写入mysql数据库.使用django对数据库中的数据信息筛选并生成可视化报表进行分析。
数据爬取,筛选,存库:
# -*- coding:utf-8 -*-
import requests
from bs4 import BeautifulSoup
import sys
import re
reload(sys)
sys.setdefaultencoding('utf-8')
import MySQLdb
import chardet
conn= MySQLdb.connect(
host='localhost',
port = 数据库端口,
user='root',
passwd='数据库密码
db ='xxnlove',
charset='utf8'
)
cur = conn.cursor()
cur.execute("create table model(name text(225),age varchar(10),blood varchar(10),school text(225),height varchar(10),weight varchar(10),Measurements text(225),cup varchar(20),location text(225))ENGINE=InnoDB DEFAULT CHARSET=utf8;")
#CREATE DATABASE gmtdb DEFAULT CHARACTER SET utf8mb4;
for num in range(521,1314):
try:
URL = 'http://mm.taobao.com/json/request_top_list.htm?page=%d' % num
#print "现在爬取的网站url是:" + URL
response = requests.get(URL)
response.encoding = 'gb2312'
text = response.text
soup = BeautifulSoup(text, 'lxml')
for model in soup.select(".list-item"):
try:
model_id = model.find('span', {'class': 'friend-follow J_FriendFollow'})['data-userid']
json_url = "http://mm.taobao.com/self/info/model_info_show.htm?user_id=%d" % int(model_id)
response_json = requests.get(json_url)
response_json.encoding = 'gb2312'
text_response_json = response_json.text
soup_json = BeautifulSoup(text_response_json, 'lxml')
#print "***********************************" + model.find('a', {'class': 'lady-name'}).string + "*********************************"
#print "模特的名字:" + model.find('a', {'class': 'lady-name'}).string
name = model.find('a', {'class': 'lady-name'}).string
#print "模特的年龄:"+ model.find('p', {'class': 'top'}).em.strong.string
age = model.find('p', {'class': 'top'}).em.strong.string
blood = soup_json.find_all('li', {'class': 'mm-p-cell-right'})[1].span.string
# if blood is None:
# blood = "None"
school = soup_json.find_all('li')[5].span.string
height = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-height'}).p.string
weight = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-weight'}).p.string
Measurements = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-size'}).p.string
location = model.find('p', {'class': 'top'}).span.string
cup = soup_json.find('li', {'class': 'mm-p-small-cell mm-p-bar'}).p.string
sqli="insert into model values(%s,%s,%s,%s,%s,%s,%s,%s,%s)"
cur.execute(sqli,(name,age,blood,school,height,weight,Measurements,cup,location))
#print "罩杯:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-bar'}).p.string
'''
print "生日:" + soup_json.find('li', {'class': 'mm-p-cell-left'}).span.string
blood = soup_json.find_all('li', {'class': 'mm-p-cell-right'})[1].span.string
if blood is None:
blood = "无"
print "血型:" + blood
print "学校/专业:" + soup_json.find_all('li')[5].span.string
print "身高:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-height'}).p.string
print "体重:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-weight'}).p.string
print "三围:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-size'}).p.string
print "罩杯:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-bar'}).p.string
print "鞋码:" + soup_json.find('li', {'class': 'mm-p-small-cell mm-p-shose'}).p.string
print "模特所在地:"+ model.find('p', {'class': 'top'}).span.string
print "模特的id:"+ model.find('span', {'class': 'friend-follow J_FriendFollow'})['data-userid']
print "模特的标签:"+ model.find_all('p')[1].em.string
print "模特的粉丝数:"+ model.find_all('p')[1].strong.string
print "模特的排名:"+ [text for text in model.find('div', {'class': 'popularity'}).dl.dt.stripped_strings][0]
print model.find('ul', {'class': 'info-detail'}).get_text(" ",strip=True)
print "模特的个人资料页面:" +"http:"+ model.find('a', {'class': 'lady-name'})['href']
print "模特的个人作品页面:" +"http:"+ model.find('a', {'class': 'lady-avatar'})['href']
print "模特的个人头像:" + "http:" + model.find('img')['src']
print "***********************************" + model.find('a', {'class': 'lady-name'}).string + "*********************************"
print "\n"
'''
except:
print "error"
except:
print num + "page is error"
cur.close()
conn.commit()
conn.close()
数据库结构:
写入数据库中的模特记录数量:
写入数据库中模特信息部分图:
django 实现图表展示:
#coding:utf-8
# Create your views here.
from django.shortcuts import render,render_to_response
from django.http import HttpResponse,HttpResponseRedirect
import MySQLdb
import sys
import re
import json
import jieba
from operator import itemgetter
from pytagcloud import create_tag_image, make_tags
import random
import time
import smtplib
from email.mime.text import MIMEText
reload(sys)
sys.setdefaultencoding('utf-8')
conn= MySQLdb.connect(
host='localhost',
port = 端口,
user='root',
passwd='密码',
db ='xxnlove',
charset='utf8'
)
def receive_message(request):
if request.method == 'POST':
name = request.POST['name']
email = request.POST['email']
subject = request.POST['subject']
message = request.POST['message']
cur = conn.cursor()
sql = "insert into message values(%s,%s,%s,%s)"
cur.execute(sql,(name,email,subject,message))
cur.close()
conn.commit()
conn.close()
return render_to_response('index.html')
def send_email(request):
_user = "[email protected]"
_pwd = "**************"
_to = "[email protected]"
msg = MIMEText("Test")
msg["Subject"] = "don't panic"
msg["From"] = _user
msg["To"] = _to
try:
s = smtplib.SMTP_SSL("smtp.qq.com", 465)
s.login(_user, _pwd)
s.sendmail(_user, _to, msg.as_string())
s.quit()
return HttpResponse("邮件发送成功")
except smtplib.SMTPException,e:
return HttpResponse("Falied,%s"%e )
def create_pictures(request):
cur = conn.cursor()
sql = "select school from model "
cur.execute(sql)
rows = cur.fetchall()
cur.close()
conn.commit()
conn.close()
fclist = []
for row in rows:
fclist.append(row[0].encode("utf-8"))
fcstr = " ".join(fclist)
wg = jieba.cut_for_search(fcstr)
wd = {}
nonsense = [u"我的", u"什么", u"你好"]
for w in wg:
if len(w) < 2:
continue
elif w in nonsense:
continue
try:
str(w)
continue
finally:
if w not in wd:
wd[w] = 1
else:
wd[w] += 1
swd = sorted(wd.iteritems(), key=itemgetter(1), reverse=True)
swd = swd[1:100]
tags = make_tags(swd,maxsize = 100)
create_tag_image(tags,
'./modles/static/1.jpg',
#background=(0, 0, 0, 255),
size=(500, 300),
fontname="STKAITI")
# cur.close()
# conn.commit()
# conn.close()
return render(request,'index.html')
def cloud(request):
return render(request,'cloud.html')
def index(request):
return render(request,'index.html')
def search(request):
if request.method == 'POST':
modelname = request.POST['name']
sql = "select * from model where name='%s'" % modelname
cur = conn.cursor()
try:
search = cur.execute(sql)
info = cur.fetchmany(search)
name = info[0][0]
age = info[0][1]
school = info[0][3]
school = ''.join(school.split())
height = info[0][4]
weight = info[0][5]
Measurements = info[0][6]
return render(request, 'index.html', {'name': name,'age': age,'school':school,'height':height,'weight':weight,'Measurements':Measurements})
except:
prompt = "sorry: 数据库中没有 "+modelname+" 这个模特的信息"
return render(request, 'index.html', {'prompt': prompt})
cur.close()
conn.commit()
conn.close()
else:
return HttpResponse('提交的方式不是post')
def show(request):
cur = conn.cursor()
agedata = []
category = []
for i in range(10,40):
category.append(i)
age = i
sql = "select count(*) from model where age='%s'" % age
age = cur.execute(sql)
i = int(cur.fetchmany(age)[0][0])
agedata.append(i)
return render(request,'show.html',{'category':category,'agedata':agedata})
cur.close()
conn.commit()
conn.close()
def area(request):
cur = conn.cursor()
citydict = {'jianxi':'南昌市|赣州市|上饶市|吉安市|九江市|新余市|抚>州市|宜春市|景德镇市|萍乡市|鹰潭市|江西',
'beijin':'北京',
'guangdong':'东莞市|广州市|中山市|深圳市|惠州市|江门市|珠海市|汕头市|佛山市|湛江市|河源市|肇庆市|清远市|潮州市|韶关市|揭阳市|阳江市|梅州市|云浮市|茂名市|汕尾市|广东',
'shandong':'济南市|青岛市|临沂市|济宁市|菏泽市|烟台市|淄博市|泰安市|潍坊市|日照市|威海市|滨州市|东营市|聊城市|德州市|莱芜市|枣庄市|山东',
'jiangsu':'苏州市|徐州市|盐城市|无锡市|南京市|南通市|连云港市|常州市|镇江市|扬州市|淮安市|泰州市|宿迁市', 'henan':'郑州市|南阳市|新乡市|安阳市|洛阳市|信阳市|平顶山市|周口市|商丘市|开封市|焦作市|驻马店市|濮阳市|三门峡市|漯河市|许昌市|鹤壁市|济源市|河南',
'shanghai':'松江区|宝山区|金山区|嘉定区|南汇区|青浦区|>浦东新区|奉贤区|徐汇区|静安区|闵行区|黄浦区|杨浦区|虹口区|普陀区|闸北区|长宁区|崇明县|卢湾区|上海',
'hebei': '石家庄市|唐山市|保定市|邯郸市|邢台市|河北区|沧州市|秦皇岛市|张家口市|衡水市|廊坊市|承德市|河北',
'zhejiang':'温州市|宁波市|杭州市|台州市|嘉兴市|金华市|>湖州市|绍兴市|舟山市|丽水市|衢州市|浙江',
'shanxi':'西安市|咸阳市|宝鸡市|汉中市|渭南市|安康市|榆>林市|商洛市|延安市|铜川市|陕西',
'hunan':'长沙市|邵阳市|常德市|衡阳市|株洲市|湘潭市|永州市|岳阳市|怀化市|郴州市|娄底市|益阳市|张家界市|湘西州|湖南',
'chongqing':'江北区|渝北区|沙坪坝区|九龙坡区|万州区|永川市|南岸区|酉阳县|北碚区|涪陵区|秀山县|巴南区|渝中区|石柱县|忠县|合川市|大渡口区|开县|长寿区|荣昌县|云阳县|梁平县|潼南县|江津市|彭水县|綦江县|璧山县|黔江区|大足县|巫山县|巫溪县|垫江县|丰都县|武隆县|万盛区|铜梁县|南川市|奉节县|双桥区|城口县|重庆',
'fujian':'漳州市|厦门市|泉州市|福州市|莆田市|宁德市|三明市|南平市|龙岩市|福建',
'tianjin':'和平区|北辰区|河北区|河西区|西青区|津南区|东丽区|武清区|宝坻区|红桥区|大港区|汉沽区|静海县|塘沽区|宁河县|蓟县|南开区|河东区|天津',
'yunnan':'昆明市|红河州|大理州|文山州|德宏州|曲靖市|昭通市|楚雄州|保山市|玉溪市|丽江地区|临沧地区|思茅地区|西双版纳州|怒江州|迪庆州|云南',
'sichuan':'成都市|绵阳市|广元市|达州市|南充市|德阳市|广安市|阿坝州|巴中市|遂宁市|内江市|凉山州|攀枝花市|乐山市|自贡市|泸州市|雅安市|宜宾市|资阳市|眉山市|甘孜州|四川',
'guangxi':'贵港市|玉林市|北海市|南宁市|柳州市|桂林市|梧州市|钦州市|来宾市|河池市|百色市|贺州市|崇左市|防城港市|广西',
'anhui':'安徽|芜湖市|合肥市|六安市|宿州市|阜阳市|安庆市|马鞍山市|蚌埠市|淮北市|淮南市|宣城市|黄山市|铜陵市|亳州市|池州市|巢湖市|滁州市',
'hainan':'三亚市|海口市|琼海市|文昌市|东方市|昌江县|陵水县|乐东县|保亭县|五指山市|澄迈县|万宁市|儋州市|临高县|白沙县|定安县|琼中县|屯昌县|海南',
'jiangxi':'南昌市|赣州市|上饶市|吉安市|九江市|新余市|抚州市|宜春市|景德镇市|萍乡市|鹰潭市|江西',
'hubei':'武汉市|宜昌市|襄樊市|荆州市|恩施州|黄冈市|孝感市|十堰市|咸宁市|黄石市|仙桃市|天门市|随州市|荆门市|潜江市|鄂州市|神农架林区|湖北',
'shanxi2':'太原市|大同市|运城市|长治市|晋城市|忻州市|临汾市|吕梁市|晋中市|阳泉市|朔州市|山西',
'liaoning':'大连市|沈阳市|丹东市|辽阳市|葫芦岛市|锦州市|朝阳市|营口市|鞍山市|抚顺市|阜新市|盘锦市|本溪市|铁岭市|辽宁',
'taiwan':'台北市|高雄市|台中市|新竹市|基隆市|台南市|嘉义市|台湾',
'heilongjiang':'齐齐哈尔市|哈尔滨市|大庆市|佳木斯市|双鸭山市|牡丹江市|鸡西市|黑河市|绥化市|鹤岗市|伊春市|大兴安岭地区|七台河市|黑龙江',
'neimenggu':'赤峰市|包头市|通辽市|呼和浩特市|鄂尔多斯市|乌海市|呼伦贝尔市|兴安盟|巴彦淖尔盟|乌兰察布盟|锡林郭勒盟|阿拉善盟|内蒙古',
'guizhou':'贵阳市|黔东南州|黔南州|遵义市|黔西南州|毕节地区|铜仁地区|安顺市|六盘水市',
'gansu':'兰州市|天水市|庆阳市|武威市|酒泉市|张掖市|陇南地区|白银市|定西地区|平凉市|嘉峪关市|临夏回族自治州|金昌市|甘南州|甘肃',
'qinghai':'西宁市|海西州|海东地区|海北州|果洛州|玉树州|黄南藏族自治州|青海',
'xinjiang':'乌鲁木齐市|伊犁州|昌吉州|石河子市|哈密地区|阿克苏地区|巴音郭楞州|喀什地区|塔城地区|克拉玛依市|和田地区|阿勒泰州|吐鲁番地区|阿拉尔市|博尔塔拉州|五家渠市|克孜勒苏州|图木舒克市|新疆',
'xizang':'拉萨市|山南地区|林芝地区|日喀则地区|阿里地区|昌都地区|那曲地区|西藏',
'jiling':'吉林市|长春市|白山市|延边州|白城市|松原市|辽源市|通化市|四平市|吉林',
'ningxia':'银川市|吴忠市|中卫市|石嘴山市|固原市|宁夏'
}
numdict = {}
for key in citydict :
sql = "select count(*) from model where location REGEXP '%s'" % citydict[key]
city = cur.execute(sql)
num = int(cur.fetchmany(city)[0][0])
numdict[key] = num
return render(request, 'area.html',{'jianxi':numdict['jianxi'],'beijin':numdict['beijin'],'guangdong':numdict['guangdong'],'shandong':numdict['shandong'],'jiangsu':numdict['jiangsu'],'henan':numdict['henan'],'shanghai':numdict['shanghai'],'hebei':numdict['hebei'],'zhejiang':numdict['zhejiang'],'shanxi':numdict['shanxi'],'hunan':numdict['hunan'],'chongqing':numdict['chongqing'],'fujian':numdict['fujian'],'tianjin':numdict['tianjin'],'yunnan':numdict['yunnan'],'sichuan':numdict['sichuan'],'guangxi':numdict['guangxi'],'anhui':numdict['anhui'],'hainan':numdict['hainan'],'jiangxi':numdict['jiangxi'],'hubei':numdict['hubei'],'shanxi2':numdict['shanxi2'],'liaoning':numdict['liaoning'],'taiwan':numdict['taiwan'],'heilongjiang':numdict['heilongjiang'],'neimenggu':numdict['neimenggu'],'guizhou':numdict['guizhou'],'gansu':numdict['gansu'],'qinghai':numdict['qinghai'],'xinjiang':numdict['xinjiang'],'xizang':numdict['xizang'],'jiling':numdict['jiling'],'ningxia':numdict['ningxia']})
{% load staticfiles %}
Charts demo
{% load staticfiles %}
动态数据展示
网站首页:
提交的信息会写入数据库中:
模特年龄正态分布情况:
首先对信息进行分词处理,然后排序,选取出现频率最高的前100个词。
这个花了我很多时间,要解决echarts地图只精确到省或者直辖市,而我爬取到的数据可能是具体的某一个地方市名,针对这个问题:我首先找了一下各省下面的市都有哪些,sql语句使用正则匹配想要获取的信息。我创建了个字典存放省名和下属的市名。另外创建个字典存放省名和匹配到的人数。
简单小结:这里面涉及到的知识点还挺多的:
爬虫:我使用的requests和beautiful这俩库。
数据库:使用的是mysql,涉及到数据库编码,sql查询,模糊匹配,python对数据库的操作,中文显示乱码的问题。
词云:jieba进行分词,pytagcloud用来生成词云。
django:views、templates、static 、url,因为我用的MySQLdb,所以没有使用django自身的ORM(models),这样我觉得更灵活。
前端展示:bootstrap(主要用来做网站的布局)和echarts(进行图表展示和数据分析用)。