模拟退火算法(SA算法)

模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

一.在开始进入正题前,先简单介绍一下物理上的固体退火原理

在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。

如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。
这里写图片描述

缓缓降温,使得物体分子在每一温度时,能够有足够时间找到安顿位置,则逐渐地,到最后可得到最低能态,系统最安稳。

二.简单的介绍一下它的历史

模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis[1] 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。
几乎同时,欧洲物理学家 V.Carny 也发表了几乎相同的成果,但两者是各自独立发现的;只是Carny“运气不佳”,当时没什么人注意到他的大作;或许可以说,《Science》杂志行销全球,“曝光度”很高,素负盛名,而Carny却在另外一本发行量很小的专门学术期刊《J.Opt.Theory Appl.》发表其成果因而并未引起应有的关注。
模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理领域。
模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。

三.模拟退火(Simulate Anneal)

如果你对退火的物理意义还是晕晕的,没关系我们还有更为简单的理解方式。想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。
这里写图片描述

1.先简单介绍爬山算法(这个算法是有缺陷的)
介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。

爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。假设起点为A(爬山算法),等达到B点时,过程就结束了。因为B左右都不能移动到比起其更低的点,此时并不能查到全局最优解。

2.模拟退火算法
如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找打一个局部最后解B。(与上面的爬山算法一样)

模拟退火其实也是一种Greedy算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以上图为例,模拟退火算法在搜索到局部最优解B后,会以一定的概率接受向右继续移动。也许经过几次这样的不是局部最优的移动后会到达B 和C之间的峰点,于是就跳出了局部最小值B。

根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变数,k为Boltzmann常数。Metropolis准则常表示为
这里写图片描述
Metropolis准则表明,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) )。其中k是一个常数,exp表示自然指数,且dE<0。所以P和T正相关。这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。也就是说,在用固体退火模拟组合优化问题,将内能E模拟为目标函数值 f,温度T演化成控制参数 t,即得到解组合优化问题的模拟退火演算法:由初始解 i 和控制参数初值 t 开始,对当前解重复“产生新解→计算目标函数差→接受或丢弃”的迭代,并逐步衰减 t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值 t 及其衰减因子Δt 、每个 t 值时的迭代次数L和停止条件S。

总结起来就是:

(1)若f( Y(i+1) ) <= f( Y(i) ) (即移动后得到更优解),则总是接受该移动;
(2)若f( Y(i+1) ) > f( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)相当于上图中,从B移向BC之间的小波峰时,每次右移(即接受一个更糟糕值)的概率在逐渐降低。如果这个坡特别长,那么很有可能最终我们并不会翻过这个坡。如果它不太长,这很有可能会翻过它,这取决于衰减 t 值的设定。

关于普通Greedy算法与模拟退火,有一个有趣的比喻:

(1)普通Greedy算法:兔子朝着比现在低的地方跳去。它找到了不远处的最低的山谷。但是这座山谷不一定最低的。这就是普通Greedy算法,它不能保证局部最优值就是全局最优值。
(2)模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向低处,也可能踏入平地。但是,它渐渐清醒了并朝最低的方向跳去。这就是模拟退火。

3.模拟退火算法的模型

1.模拟退火算法可以分解为解空间目标函数初始解三部分。
2.模拟退火的基本思想:
(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L
(2) 对k=1, …, L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量ΔT=C(S′)-C(S),其中C(S)为评价函数
(5) 若ΔT<0则接受S′作为新的当前解,否则以概率exp(-ΔT/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
3模拟退火算法的步骤
模拟退火算法新解的产生和接受可分为如下四个步骤:

第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若ΔT<0则接受S′作为新的当前解S,否则以概率exp(-ΔT/T)接受S′作为新的当前解S。

第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。
模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。
模拟退火算法(SA算法)_第1张图片
4.模拟退火算法的伪代码

/*
* J(y):在状态y时的评价函数值
* Y(i):表示当前状态
* Y(i+1):表示新的状态
* r: 用于控制降温的快慢
* T: 系统的温度,系统初始应该要处于一个高温的状态
* T_min :温度的下限,若温度T达到T_min,则停止搜索
*/
while( T > T_min )
{
  dE = J( Y(i+1) ) - J( Y(i) ) ; 

  if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  else
  {
// 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也越大
if ( exp( dE/T ) > random( 0 , 1 ) )
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
  }
  T = r * T ; //降温退火 ,0
  /*
  * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值
  */
  i ++ ;
}

四.模拟退火算法解决TSP(旅行商问题)

旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。(哈密顿回路)

  旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

  使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的)
  模拟退火解决TSP的思路:

  1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )

  2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温

  3. 重复步骤1,2直到满足退出条件

      产生新的遍历路径的方法有很多,下面列举其中3种:

  4. 随机选择2个节点,交换路径中的这2个节点的顺序。

  5. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

  6. 随机选择3个节点m,n,k,然后将节点m与n间的节点移位到节点k后面。

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define N     30      //城市数量
#define T     3000    //初始温度
#define EPS   1e-8    //终止温度
#define DELTA 0.98    //温度衰减率

#define LIMIT 1000   //概率选择上限
#define OLOOP 20    //外循环次数
#define ILOOP 100   //内循环次数

using namespace std;

//定义路线结构体
struct Path
{
    int citys[N];
    double len;
};

//定义城市点坐标
struct Point
{
    double x, y;
};

Path bestPath;        //记录最优路径
Point p[N];       //每个城市的坐标
double w[N][N];   //两两城市之间路径长度
int nCase;        //测试次数

double dist(Point A, Point B)
{
    return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
}

void GetDist(Point p[], int n)
{
    for(int i = 0; i < n; i++)
        for(int j = i + 1; j < n; j++)
            w[i][j] = w[j][i] = dist(p[i], p[j]);
}

void Input(Point p[], int &n)
{
    scanf("%d", &n);
    for(int i = 0; i < n; i++)
        scanf("%lf %lf", &p[i].x, &p[i].y);
}

void Init(int n)
{
    nCase = 0;
    bestPath.len = 0;
    for(int i = 0; i < n; i++)
    {
        bestPath.citys[i] = i;
        if(i != n - 1)
        {
            printf("%d--->", i);
            bestPath.len += w[i][i + 1];
        }
        else
            printf("%d\n", i);
    }
    printf("\nInit path length is : %.3lf\n", bestPath.len);
    printf("-----------------------------------\n\n");
}

void Print(Path t, int n)
{
    printf("Path is : ");
    for(int i = 0; i < n; i++)
    {
        if(i != n - 1)
            printf("%d-->", t.citys[i]);
        else
            printf("%d\n", t.citys[i]);
    }
    printf("\nThe path length is : %.3lf\n", t.len);
    printf("-----------------------------------\n\n");
}

Path GetNext(Path p, int n)
{
    Path ans = p;
    int x = (int)(n * (rand() / (RAND_MAX + 1.0)));
    int y = (int)(n * (rand() / (RAND_MAX + 1.0)));
    while(x == y)
    {
        x = (int)(n * (rand() / (RAND_MAX + 1.0)));
        y = (int)(n * (rand() / (RAND_MAX + 1.0)));
    }
    swap(ans.citys[x], ans.citys[y]);
    ans.len = 0;
    for(int i = 0; i < n - 1; i++)
        ans.len += w[ans.citys[i]][ans.citys[i + 1]];
    cout << "nCase = " << nCase << endl;
    Print(ans, n);
    nCase++;
    return ans;
}

void SA(int n)
{
    double t = T;
    srand((unsigned)(time(NULL)));
    Path curPath = bestPath;
    Path newPath = bestPath;
    int P_L = 0;
    int P_F = 0;
    while(1)       //外循环,主要更新参数t,模拟退火过程
    {
        for(int i = 0; i < ILOOP; i++)    //内循环,寻找在一定温度下的最优值
        {
            newPath = GetNext(curPath, n);
            double dE = newPath.len - curPath.len;
            if(dE < 0)   //如果找到更优值,直接更新
            {
                curPath = newPath;
                P_L = 0;
                P_F = 0;
            }
            else
            {
                double rd = rand() / (RAND_MAX + 1.0);
                //如果找到比当前更差的解,以一定概率接受该解,并且这个概率会越来越小
                if(exp(dE / t) > rd && exp(dE / t) < 1)
                    curPath = newPath;
                P_L++;
            }
            if(P_L > LIMIT)
            {
                P_F++;
                break;
            }
        }
        if(curPath.len < bestPath.len)
            bestPath = curPath;
        if(P_F > OLOOP || t < EPS)
            break;
        t *= DELTA;
    }
}

int main(int argc, const char * argv[]) {

    freopen("TSP.data", "r", stdin);
    int n;
    Input(p, n);
    GetDist(p, n);
    Init(n);
    SA(n);
    Print(bestPath, n);
    printf("Total test times is : %d\n", nCase);
    return 0;
}

五.内容大体来源,参考:

1.http://blog.csdn.net/sci_m3/article/details/51539003
2.https://www.cnblogs.com/ranjiewen/p/6084052.html
3.https://baike.baidu.com/item/%E6%A8%A1%E6%8B%9F%E9%80%80%E7%81%AB%E7%AE%97%E6%B3%95/355508?fr=aladdin

你可能感兴趣的:(acm算法)