- 【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(4)神经网络中的重要组件
第三章:神经网络原理详解与Pytorch入门第一部分:神经网络算法理论详解与实践第四节:神经网络中的重要组件内容:激活函数、loss函数、dropout、梯度消失与爆炸、过拟合与欠拟合神经网络的性能依赖于多个关键组件的合理设计与使用。理解这些组件有助于构建更加稳健且高效的模型。一、激活函数(ActivationFunction)【深度学习】关键技术-激活函数(ActivationFunctions
- 目标检测在国防和政府的应用实例
MzKyle
计算机视觉目标检测人工智能计算机视觉
一、目标检测技术概述目标检测是计算机视觉的核心任务,通过算法对图像/视频中的物体进行识别与定位,当前主流技术包括:经典算法:YOLO系列(实时性强)、FasterR-CNN(精度高)、SSD(平衡速度与精度)技术升级:结合深度学习(CNN、Transformer)、多模态融合(视觉+红外+雷达)、边缘计算实时处理二、国防领域核心应用实例(一)军事侦察与监控系统无人机侦察与目标识别应用场景:战术无人
- 《深度学习》—— PyTorch的介绍及PyTorch的CPU版本安装
张小生180
人工智能深度学习pytorch
文章目录一、PyTorch的简单介绍二、pytorch的CPU版本安装三、torch、torchvision、torchaudio三个库的介绍一、PyTorch的简单介绍PyTorch是一个由FacebookAI实验室开发的深度学习框架,它基于Python,并提供了高效的GPU加速和灵活的模型定义能力。1.PyTorch的基本特点动态计算图:PyTorch采用动态计算图的方式,这意味着计算图是在运
- 「日拱一码」017 深度学习常用库——TensorFlow
目录基础操作张量操作:tf.constant用于创建常量张量tf.Variable用于创建可训练的变量张量tf.reshape可改变张量的形状tf.concat可将多个张量沿指定维度拼接tf.split则可将张量沿指定维度分割数学运算:tf.add张量的加运算tf.subtract张量的减运算tf.multiply张量的乘运算tf.divide张量的除运算tf.pow计算张量的幂tf.sqrt计算
- OpenCV中超分辨率(Super Resolution)模块类cv::dnn_superres::DnnSuperResImpl
村北头的码农
OpenCVopencvdnn人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中超分辨率(SuperResolution)模块的一个内部实现类。它属于dnn_superres模块,用于加载和运行基于深度学习的图像超分辨率模型。这个类是OpenCV中用于执行深度学习超分辨率推理的主要类。你可以用它来加载预训练的超分辨率模型(如ED
- 深度解析生成式 AI:从技术原理到实战应用
LNL13
人工智能
一、生成式AI:重构数字内容生产范式(一)技术定义与核心价值生成式人工智能(GenerativeAI)是通过深度学习模型自动创造文本、图像、代码、视频等内容的技术体系,其核心在于从数据中学习概率分布并生成符合人类认知的输出。与传统判别式AI(如图像分类)不同,生成式AI实现了从"识别"到"创造"的跨越,典型应用包括:文本领域:ChatGPT对话系统、小说自动生成图像领域:MidJourney艺术创
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- 计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
B站计算机毕业设计大学
大数据毕业设计人工智能课程设计知识图谱python大数据深度学习爬虫
温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!信息安全/网络安全大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人介绍资料《Python知识图谱中华古诗
- AI编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
Clf丶忆笙
AI人工智能开发全栈教程学习python人工智能ai
文章目录Python市场行情:AI开发的首选语言为什么学习Python对AI至关重要AI开发所需的Python知识体系Python编程基础科学计算与数据处理机器学习与深度学习性能优化与并行计算Python学习路线推荐阶段一:Python编程基础(1-2个月)阶段二:科学计算与数据处理(1-2个月)阶段三:机器学习基础(2-3个月)阶段四:深度学习与AI专项(3-6个月)阶段五:进阶与专项深化(持续
- 计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!温馨提示:文末有CSDN平台官方提供的学长联系方式的名片!信息安全/网络安全大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人介绍资料Python知识图谱中华古诗词
- 什么是端到端自动驾驶
未来创世纪
自动驾驶自动驾驶人工智能机器学习
一、与传统架构的核心差异工作流程传统模块化架构是分模块串联,比如感知模块先识别出前方有交通信号灯变红,然后将此信息传递给决策模块,决策模块决定要停车,接着规划模块规划出减速的路径和方式,最后控制模块执行停车操作。而端到端架构是直接将传感器的原始数据(如摄像头拍摄的视频、激光雷达的点云数据等)输入给一个单一深度学习模型,模型直接输出控制指令,如控制车辆的转向角度、油门开度或刹车力度。以自动驾驶汽车在
- 提升自动驾驶导航能力:基于深度学习的场景理解技术
星辰和大海都需要门票
路径规划算法自动驾驶深度学习人工智能
EnhancingAutonomousVehicleNavigationUsingDeepLearning-BasedSceneUnderstanding提升自动驾驶导航能力:基于深度学习的场景理解技术摘要-为应对复杂环境下的自动驾驶导航,系统高度依赖场景理解的准确性。本研究提出一种基于深度学习的新方法,将目标识别、场景分割、运动预测与强化学习相结合以提升导航性能。该方法首先采用U-Net架构分解
- AI人工智能与自动驾驶的协同创新模式
AI大模型应用之禅
人工智能自动驾驶机器学习ai
AI人工智能与自动驾驶的协同创新模式关键词:人工智能、自动驾驶、协同创新、深度学习、计算机视觉、传感器融合、决策系统摘要:本文深入探讨了人工智能与自动驾驶技术的协同创新模式。我们将从基础概念出发,逐步分析AI如何赋能自动驾驶系统,涵盖感知、决策和控制三大核心模块。文章将通过生动的比喻解释复杂技术原理,展示实际代码实现,并探讨未来发展趋势和挑战。通过这篇文章,读者将全面理解AI与自动驾驶如何相互促进
- 大语言模型应用指南:Gemini简介
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍自然语言处理(NLP)一直是人工智能领域的热门话题之一。在NLP中,语言模型是一个重要的概念,它可以用来预测下一个单词或字符的概率。近年来,随着深度学习技术的发展,大型语言模型的研究和应用也越来越受到关注。其中,Gemini是一种新型的大型语言模型,它在多项任务上取得了优异的表现。本文将介绍Gemini的核心概念、算法原理、数学模型和公式、项目实践、实际应用场景、工具和资源推荐、未来发
- 第G1周:生成对抗网络(GAN)入门
本文为365天深度学习训练营原作者:K同学啊基础任务:1.了解什么是生成对抗网络2.生成对抗网络结构是怎么样的3.学习本文代码,并跑通代码进阶任务:调用训练好的模型生成新图像一、理论基础生成对抗网络(GenerativeAdversarialNetworks,GAN)是近年来深度学习领域的一个热点方向。GAN并不指代某一个具体的神经网络,而是指一类基于博弈思想而设计的神经网络。GAN由两个分别被称
- 数据分析的智能化变革:AI人工智能
AI大模型应用工坊
数据分析人工智能数据挖掘ai
数据分析的智能化变革:AI人工智能关键词:数据分析、智能化变革、AI人工智能、机器学习、深度学习摘要:本文深入探讨了数据分析领域借助AI人工智能实现的智能化变革。详细阐述了相关核心概念、算法原理、数学模型,通过具体的项目实战展示了AI在数据分析中的应用,介绍了实际应用场景以及可利用的工具和资源。同时对数据分析智能化变革的未来发展趋势与挑战进行了总结,并解答了常见问题,为读者全面了解这一变革提供了丰
- 注意力机制还有招?混合注意力好发不卷
2025深度学习发论文&模型涨点之——混合注意力混合注意力是一种融合多种不同类型注意力机制的技术,旨在提升模型对数据中关键特征的识别与处理能力。以SENet为例,它通过对特征通道进行全局池化操作,随后利用两个全连接层对通道的重要性进行建模,从而实现通道级的注意力分配。而CBAM则先应用空间注意力,通过利用特征图的通道最大值和平均值来突出重要区域,之后再进行通道注意力操作,借助全连接层来强化特定通道
- AI大模型定义与应用概述
水云桐程序员
人工智能ai大模型
AI大模型,也成为基础模型或大规模预训练模型,指的是在海量数据上通过深度学习技术进行预训练的超大型人工智能模型。常见类型大型语言模型:这是目前最主流和成熟的大模型类型。擅长文本生成、文本理解、机器翻译、对话系统、代码生成与解释等。代表案例:GPT系列、通义千问、文心一言、KimiChat等。多模态大模型:擅长同时处理和生成多种模态的信息,如文生图、图生文、图文问答、视频理解、音频生成等。代表案例:
- 浅析基于深度学习算法的日语OCR技术原理及其应用场景
AI人工智能+
TEL18600524535ocr文字识别人工智能
在全球数字化进程加速的今天,日语作为世界第九大使用语言,其文字处理的自动化需求日益凸显,日语OCR技术应运而生。中科逸视日文OCR技术是一款基于先进人工智能技术的专业光学字符识别(OCR)解决方案,专门针对日语文本的数字化需求设计开发。能够将纸质文档、图片中的日文内容快速准确地转换为可编辑、可搜索的电子文本,大幅提升日文资料的处理效率,为企业国际化运营和个人日语学习提供强有力的技术支持。技术原理中
- 蒙特卡罗方法与深度学习的关系
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
蒙特卡罗方法与深度学习的关系作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来蒙特卡罗方法和深度学习都是近年来在计算科学和人工智能领域取得重大突破的技术。蒙特卡罗方法是一种基于随机抽样的数值计算方法,广泛应用于物理、工程、金融等领域。深度学习则是一种基于人工神经网络的学习方法,在图像识别、语音识别、自然语言处理等领域取得了显
- 【Python】车牌自动识别
幽兰的天空
Pythonpythonopencv
实现车牌自动识别(LicensePlateRecognition,LPR)是计算机视觉和深度学习领域中的一个常见任务。用Python和OpenCV,结合其他深度学习库,可以建立一个简单的车牌识别系统。以下是一个基于这两者的基本实现思路和示例代码。实现步骤环境准备:安装必要的库:bashpipinstallopencv-pythonopencv-python-headlessnumpypillowp
- Python和OpenCV实现车牌识别的毕业设计案例
媛源啊
本文还有配套的精品资源,点击获取简介:本项目通过Python和OpenCV库,实现了一个实用的车牌识别系统,包含图像捕获、预处理、车牌定位、车牌分割和字符识别等步骤。系统提供了一键运行的完整代码,使学生能够快速掌握计算机视觉和深度学习应用。遇到的挑战和解决方案也进行了讨论,比如光照变化、车牌角度不一致和污损的处理,以及数据增强技术和模型参数优化。1.车牌识别系统的基本理论和应用1.1车牌识别的背景
- PyTorch实战:从零开始构建CIFAR-10图像分类模型 (附详细代码与图解)
电脑能手
pytorch分类人工智能深度学习python
PyTorch实战:从零开始构建CIFAR-10图像分类模型(附详细代码与图解)大家好!今天,我们将一起踏上一段激动人心的深度学习之旅:使用强大的PyTorch框架,从零开始构建一个卷积神经网络(CNN),来解决经典的CIFAR-10图像分类问题。无论你是深度学习的新手,还是希望巩固PyTorch基础知识的开发者,本文都将为你提供一个清晰、详尽的实战指南。本文目标读完本文,你将学会:加载和预处理C
- Day44
1.预训练概念:在大规模数据上训练模型学习通用知识,再迁移到下游任务微调2.常见模型:图像有AlexNet、ResNet、ViT;NLP有BERT、GPT3.图像模型发展:从手工特征到深度学习,从CNN到Transformer、多模态4.预训练策略:数据增强、自监督/监督训练、模型微调、多模态学习作业1.importtorchimporttorch.nnasnnimporttorch.optima
- 当AI邂逅新能源:Java如何重构能源未来
当AI邂逅新能源:Java如何重构能源未来在阿联酋阿布扎比的沙漠深处,一座由AI驱动的“全景式数字指挥中心”正实时监控着2000公里外的海上油田。通过深度学习算法预测设备故障、优化钻井路径,这座由阿布扎比国家石油公司打造的智能中枢,每年减少100万吨碳排放,创造价值5亿美元。而在中国南方,全球首个大规模抽水蓄能AI数据分析平台,正让百年历史的电站群焕发新生——7座电站、34台机组实现90%人工巡检
- 顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)
AI科研技术派
神经网络人工智能深度学习
图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!AAAI20241、Fine-tuningGraphNeuralNetworksbyPreservingGraphGenerativePatterns通过
- OpenCV图像边缘检测
慕婉0307
opencv基础opencv人工智能计算机视觉
一、边缘检测基础概念边缘检测是图像处理中最基本也是最重要的操作之一,它能识别图像中亮度或颜色急剧变化的区域,这些区域通常对应物体的边界。OpenCV提供了多种边缘检测方法,从传统的算子到基于深度学习的现代方法。1.1为什么需要边缘检测?数据降维:将图像转换为边缘表示可大幅减少数据量特征提取:边缘是图像最重要的视觉特征之一预处理步骤:为物体识别、图像分割等高级任务做准备噪声抑制:某些边缘检测方法具有
- 【PyTorch】PyTorch中张量(Tensor)微分操作
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第六章PyTorch中张量(Tensor)微分操作文章目录PyTorch深度学习总结前言一、torch.autograd模块二、主要功能和使用方法1.张量的requires_grad属性2.backward()方法3.torch.no_grad()上下文管理器三、函数总结前言上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的微分(torch.aut
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri