- Scanpy源码浅析之pp.normalize_total
何物昂
版本导入Scanpy,其版本为'1.9.1',如果你看到的源码和下文有差异,其可能是由于版本差异。importscanpyasscsc.__version__#'1.9.1'例子函数pp.normalize_total用于Normalizecountspercell,其源代码在scanpy/preprocessing/_normalization.py我们通过一个简单例子来了解该函数主要功能:将一
- 图片中的上采样,下采样和通道融合(up-sample, down-sample, channel confusion)
迪三
#图像处理_PyTorch计算机视觉深度学习人工智能
前言以conv2d为例(即图片),Pytorch中输入的数据格式为tensor,格式为:[N,C,W,H,W]第一维N.代表图片个数,类似一个batch里面有N张图片第二维C.代表通道数,在模型中输入如果为彩色,常用RGB三色图,那么就是3维,即C=3。如果是黑白的,即灰度图,那么只有一个通道,即C=1第三维H.代表图片的高度,H的数量是图片像素的列数第四维W.代表图片的宽度,W的数量是图片像素的
- 如何从大型语言模型(LLM)流式响应
aehrutktrjk
语言模型microsoftajaxpython
引言随着大型语言模型(LLM)的不断发展,我们不仅能够获得高质量的文本生成结果,还可以实时观察模型生成文本的过程。流式响应允许我们以一种更加交互和动态的方式与LLM进行交互,这在某些应用场景中非常有用。在本文中,我们将探讨如何从LLM流式获取响应。基础知识在开始之前,我们需要了解一些基础概念。所有的LLM都实现了Runnable接口,该接口提供了一些默认实现的标准方法,如invoke、batch、
- seq_len 不等于 hidden_size 难道不会报错吗,他们是一会事情吗
zhangfeng1133
python人工智能开发语言pytorch
seq_len与hidden_size在RNN中代表不同概念,不等不会报错。seq_len:序列长度,表示在处理数据时,每个批次(batch)中序列的长度。RNN网络会按照seq_len指定的长度进行循环计算1。hidden_size:隐藏层中隐藏神经元的个数,也是输出向量的长度。它决定了RNN网络中隐藏层的状态向量的维度12。在RNN的训练过程中,seq_len和hidden_si
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- ‘float‘ object cannot be interpreted as an integer
多欢喜
深度学习进阶课程error
今天写代码的时候遇到了新的问题:'float'objectcannotbeinterpretedasaninteger代码出错地方:forminibatch_indexinrange(num_training_batches):找到num_traininng_batches:num_training_batches=size(training_data)/mini_batch_size理论上感觉没
- Unity3D GPUDriven渲染详解
Thomas_YXQ
开发语言Unity3D架构游戏Unity
前言Unity3D中的GPUDriven渲染技术是一种通过最大化GPU的利用,减少CPU负担,从而提高渲染效率和帧率的方法。其核心思想是将更多的渲染任务转移到GPU上,充分利用现代图形硬件(显卡)的性能。以下是该技术的几个关键组件和它们的作用:对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!1.BatchRendererGroup(BRG)BRG是Unity中用于批处理渲
- 华为eNSP常用命令整合-视图种类-划分vlan
S+叮当猫
华为网络智能路由器
视图种类和切换:三种视图①用户视图---默认状态下为用户视图,快捷键ctrl+z切换为用户视图②系统视图---[主机名]命令system-view进入系统视图,使用快捷键ctrl+z从系统视图切换回用户视图③接口视图---[主机名-接口名]在系统视图下,输入接口号,进入接口视图第一部分:划分vlan1.创建vlan:vlanbatch23---创建两个vlan,vlan1和vlan2(不要创建名字
- 获取视频长度
AI算法网奇
python基础python开发语言
fromdecordimportVideoReadersys.path.insert(0,'/home/model-server/dev/data_platform/processors')fromaestheticimportget_aesthetic_model,get_aesthetic_score_batch_queuefrommytools.utilsimportprint_with_t
- ssm——整合,前端页面设计,分页
2401_86367399
面试辅导大厂内推前端java开发语言
empMapper.updateEmpById(m);}//用于批量的插入数据@TestpublicvoidinsertDeptByBATCH(){DeptMapperOCM=sqlSession.getMapper(DeptMapper.class);for(inti=0;iindex.jsp页面发送出查询信息列表的请求->EmpController来接受请求,然后查询出员工数据->跳转到lis
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- pytorch矩阵乘法
weixin_45694975
pytorch深度学习神经网络
一、torch.bmminput1shape:(batch_size,seq1_len,emb_dim)input2shape:(batch_size,emb_dim,seq2_len)outputshape:(batch_size,seq1_len,seq2_len)注意:torch.bmm只适合三维tensor做矩阵运算特别地,torch.bmm支持tenso广播运算input1shape:(
- 【Python机器学习】循环神经网络(RNN)——传递数据并训练
zhangbin_237
Python机器学习机器学习pythonrnn人工智能开发语言深度学习神经网络
与其他Keras模型一样,我们需要向.fit()方法传递数据,并告诉它我们希望训练多少个训练周期(epoch):model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test))因为个人小电脑内存不足,所以吧maxlen参数改成了100重新运行。保存模型:model_struc
- 李沐55_循环神经网络RNN简洁实现——自学笔记
Rrrrrr900
rnn深度学习神经网络pytorch循环神经网络python李沐
读取《时间机器》数据集!pipinstalld2l!pipinstall--upgraded2l==0.17.5#d2l需要更新importtorchfromtorchimportnnfromtorch.nnimportfunctionalasFfromd2limporttorchasd2lbatch_size,num_steps=32,35train_iter,vocab=d2l.load_da
- Pytorch维度转换操作:view,reshape,permute,flatten函数详解
ghx3110
深度学习笔记pytorch维度转换操作
引言Pytorch中常见的维度转换函数有view,reshape,permute,flatten。本文将详细介绍这几个函数的作用与使用方式,并给出了具体的代码示例,希望能够帮助大家。常见的维度有四维:比如(batch,channel,height,width);三维:比如(b,n,c);二维:比如(h,w)。下面介绍如何使用上述函数进行维度之间的转换。1.view函数作用tensor.view()
- pytorch计算网络参数量和Flops
Mr_Lowbee
PyTorchpytorch深度学习人工智能
fromtorchsummaryimportsummarysummary(net,input_size=(3,256,256),batch_size=-1)输出的参数是除以一百万(/1000000)M,fromfvcore.nnimportFlopCountAnalysisinputs=torch.randn(1,3,256,256).cuda()flop_counter=FlopCountAna
- linux多个sh 同时执行命令,sh, 批量执行Linux命令
一颗橙子君
linux多个sh同时执行命令
step1:创建一个sh批处理命令文件#vim/etc/batch_ssh/install_redis.shstep2:给当前用户,能够执行sh脚本权限#chmodinstall_redis.sh777step3:编写要批量执行的命令,read表示等待前端用户输入,sleep表示等待时间单位为秒。echo'\nbegintoinstall01plugin\n';yuminstallcpp-y;ec
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- 大模型多机多卡脚本实例 - 增量预训练 -accelerate和deepspeed命令多机多卡训练有什么不同
AI生成曾小健
大模型/增量预训练CPT深度学习python机器学习
第一步,同步权重ls-l/data/xxx/gpu008/MoeRemake/train/etuning/LLaMA-Factory2/models/xxx-Base-10B-200k-Llama第二步,同步环境:./scp_batch.sh"/data/xxx/miniconda3/envs/etuning4/""/data/vayu/miniconda3/envs/etuning4/"gpu0
- SQL进阶技巧:截止当前批次前的批次量与订单量 | 移动窗口问题
莫叫石榴姐
数字化建设通关指南#SQL进阶实战技巧sql数据库大数据数学建模hive数据仓库数据分析
目录0场景描述1数据准备2问题分析3小结0场景描述表A有如下字段,userid(用户ID),batchid(批次ID),orderid(订单ID),createtime(创建时间),同一个用户ID下有多个批次,同一个批次下有多个订单ID,相同批次ID的创建时间是相同的,创建时间精确到了秒。统计,截止对应批次ID的时间点前,该用户下有多少个批次ID,有多少个订单ID,输出的字段应该为用户ID批次ID
- 【已解决】Halcon错误代码4104
聪明不喝牛奶
深度学习Halcon+CSharphalcon深度学习
问题描述在运行的时候发现报错4104,如下图所示解决从字面上理解就是超出了计算机的内存空间了,那么着手解决的话就需要把没次训练的张数减少一些即可。去相对应的修改batch_size即可。结果如下图所示,正常在使用GPU训练。搞定,手工~
- Java一分钟之-Spring Batch:批量处理框架
Jimaks
后端javaspringbatch
在企业级应用开发中,批量数据处理是一项常见且关键的任务,它涉及到大规模数据的导入、导出、转换等操作。SpringBatch,作为Spring家族的一员,专为此类需求设计,提供了一套强大且灵活的批处理框架。本文旨在深入浅出地介绍SpringBatch的基础、常见问题、易错点及其规避策略,并配以实用的代码示例,帮助开发者高效利用这一工具。SpringBatch简介SpringBatch旨在简化批量处理
- Python请求数据,r = response.json(),提取字段报TypeError: list indices must be integers or slices, not str[已解决]
qq_41845402
pythonjson开发语言
#encoding:utf-8r={"atomicElapsed":74,"data":{"pageCount":0,"pageData":[{"batchLock":0,"batchNo":"882211080000016","companyCode":"CRV","createTime":"2022-11-0818:44:11","crowdWorkerID":""}]},"hystrixEl
- Kafka高性能揭秘 —— sequence IO、PageCache、SendFile的应用详解
大数据学习与分享
Kafkakafka大数据java
大家都知道Kafka是将数据存储于磁盘的,而磁盘读写性能往往很差,但Kafka官方测试其数据读写速率能达到600M/s,那么为什么Kafka性能会这么高呢?首先producer往broker发送消息时,采用batch的方式即批量而非一条一条的发送,这种方式可以有效降低网络IO的请求次数,提升性能。此外这些批次消息会"暂存"在缓冲池中,避免频繁的GC问题。批量发送的消息可以进行压缩并且传输的时候可以
- 大模型入门(一)
pit_man
人工智能大模型
大模型入门(一)一、LLaMa模型介绍1)Pre-normalization2)SwiGLU激活函数3)RoPE旋转位置编码二、Alpaca模型介绍三、Vicuna模型介绍大模型入门(一)——LLaMa/Alpaca/VicunaLLaMa模型是Meta开源的大模型,模型参数从7B到65B不等,LLaMa-7B在大多数基准测试上超过了GPT3-173B,而LLaMa-65B和Chinchilla-
- EFUtilities批量处理
威威当爸了
SQL前端服务器javascript
nutgetEFUtilities批量插入 EFBatchOperation.For(con,con.SnPrints).InsertAll(snprintList);插量更新 using(Database.EF.Contextcon=newDatabase.EF.Context()) { varcc=con.SnPrints.Where(o=>o.Ser
- 自动安装第三方库python,python第三方库自动安装脚本
杏仁菌子
自动安装第三方库python
#python第三方库自动安装脚本,需要在cmd中运行此脚本#BatchInstall.pyimportoslibs={"numpy","matplotlib","pillow","sklearn","requests",\"jieba","beautifulsoup4","wheel","networkx","sympy",\"pyinstaller","django","flask","wer
- [Instance Normalization] The Missing Ingredient for Fast Stylization
emergency_rose
paper阅读笔记大数据
BN->IN,能有效提升纹理风格转化任务的图像生成质量1、原因1)生成图像的对比度主要取决于style图像,而非content图像;通过instancenormalization,可以去除content图像的个体对比度差异,从而简化生成过程2)高度非线性的contrastnormalization很难通过CNNblock(包含卷积、池化、上采样、BN等)来实现,因此需要直接在architectur
- 深度学习速通系列:归一化和批量归一化
Ven%
深度学习速通系列自然语言处理人工智能深度学习python机器学习
在深度学习中,归一化和批量归一化是两种常用的技术,它们有助于提高模型的训练效率和性能。下面详细解释这两种技术:归一化(Normalization)归一化是指将数据的数值范围调整到一个特定的区间,通常是[0,1]或者[-1,1],或者使其具有零均值和单位方差。这样做的目的是减少不同特征之间的数值范围差异,使得模型训练更加稳定和高效。常见的归一化方法包括:最小-最大归一化(Min-MaxScaling
- YOLOv8模型参数详解
AdaCoding
YOLOv8改进系列YOLO目标检测
YOLOv8模型参数详解task:任务类型,通常为detect(检测)。mode:模式,train表示训练模式。model:模型配置文件的路径,指定了YOLOv8模型的结构。data:数据集配置文件的路径,包含了训练集和验证集的信息。epochs:训练的轮数。patience:早期停止的耐心值,表示在没有进一步改进后多少轮后停止训练。batch:批处理大小,即每次前向和后向传播使用的样本数。img
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(