- 【AI日记】25.01.06
AI完全体
AI日记人工智能机器学习kaggle比赛
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】AI参加:kaggle比赛ForecastingStickerSales读书书名:国家为什么会失败阅读原因:2024年诺贝尔经济学奖得主的力作,之前我已经读过他另一本书了《權力與進步》备注:有兴趣的建议读未删减版https://book.douban.com/subject/26388427/discussion
- 文献综述相关ChatGPT提示词分享
AIWritePaper官方账号
PromptChatGPTAIWritePaperchatgpt人工智能数据分析AIGC信息可视化数据挖掘prompt
文献综述ChatGPT可以帮助提高文献综述的有效性和全面性。ChatGPT可以高效搜索和审查与宝子们课题研究相关的文献资料来源。一些给力的插件工具还可以帮助您总结复杂的研究论文并提取信息以更快更好地消化信息。合理的运用ChatGPT和GPTs可以提高文献综述的清晰度和质量,使其更加全面和有洞察力。文献综述提示词*131.在[人工智能相关]领域中,主要发现有哪些?2.在[人工智能相关]领域中,引用次
- YOLOv8改进,YOLOv8检测头融合DiverseBranchBlock,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要一种卷积神经网络(ConvNet)的通用构建模块,以在不增加推理时间成本的情况下提高性能。该模块被命名为多样分支块(DiverseBranchBlock,DBB),通过结合不同尺度和复杂度的多样分支来丰富特征空间,包括卷积序列、多尺度卷积和平均池化,从而增强单个卷积的表示能力。在训练后,DBB可以等效地转换为一个单独的卷积层以进行部署。与新型ConvNet架构的进步不同,DBB在保持宏观架构的
- 【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码)
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例介绍摘要在嵌入式设备上部署卷积神经网络(CNNs)由于有限的内存和计算资源而变得困难。特征图中的冗余是那些成功的CNNs的一个重要特性,但在神经架构设计中很少被研究。本文提出了一种新颖的Ghost模块,
- 论文阅读:Deep Bilateral Learning for Real-Time Image Enhancement-google-hdrnet-slicing
SetMaker
论文阅读
项目地址:https://gitcode.com/google/hdrnethdrnet作为超分领域的经典文章,由google提出主要用来用轻量化的方法来实现高分辨率的图像生成,hdrnet结合cnn可以让更高分辨率的图像部署在板端。如图所示,原始图像比如4k图像,首先分为两个主要模块:grid和guide。grid就是对应图上面的那一条特征提取网络,具体来说,原始图像经过下采样之后,默认256分
- OpenVoiceV2:零样本跨语言语音克隆技术,支持多种风格控制
智慧医疗
AIGC语音识别人工智能语音克隆
1openvoicev2介绍语音克隆技术近年来取得了显著进展,但现有方法通常存在着局限性,例如无法灵活控制语音风格、需要大量多语言数据进行训练、生成速度慢等等。为了克服这些挑战,MyShell.ai团队推出了全新的语音克隆技术OpenVoiceV2,它能够在无需额外训练的情况下,仅凭少量参考音频,就能够克隆任何人的声音,并支持多种语音风格控制,以及快速高效的跨语言语音生成。论文地址:http://
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- YOLOv9改进,YOLOv9检测头融合,适合目标检测、分割任务
挂科边缘
YOLOv9改进目标检测人工智能计算机视觉YOLO
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- YOLOv8改进,YOLOv8检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- 使用MoA(Mixture of Agents)混合智能体技术,结合多个开源大语言模型如Llama3、phi-3和Mistral,实现一个强大的AI智能体
fc&&fl
大模型实战应用人工智能语言模型自然语言处理
1.简介论文简介:论文提出了一种称为混合智能体(Mixture-of-Agents,MoA)的方法,利用多个大语言模型(LLM)的集体智慧来提高自然语言理解和生成任务的性能。MoA采用了分层结构,每一层包含多个LLM智能体。每个智能体都将前一层所有智能体的输出作为辅助信息来生成自己的回答。通过迭代地综合和优化回答,MoA可以充分利用不同LLM的独特优势。实验发现,即使其他模型提供的辅助回答质量较低
- 基于YOLOv5、YOLOv8和YOLOv10的自助售货机商品检测:深度学习实践与应用
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言自助售货机已经成为现代零售和自动化销售领域的重要组成部分。在自助售货机中,商品的检测与管理至关重要。通过精准的商品检测技术,售货机可以在商品售出后自动更新库存,并提供准确的商品信息反馈。然而,在复杂的环境下进行商品检测是一个具有挑战性的问题,尤其是在商品种类繁多、摆放方式多样以及光照条件变化较大的情况下。近年来,基于深度学习的目标检测算法,特别是YOLO(YouOnlyLookOnce)系列模
- 【论文投稿】Spring Boot 开发全攻略:从入门到精通
小周不想卷
艾思科蓝学术会议投稿springboot
目录一、SpringBoot简介与优势二、开发环境搭建三、创建SpringBoot项目四、项目结构剖析五、控制器开发六、服务层设计七、数据访问层构建一、SpringBoot简介与优势SpringBoot是一个基于Spring框架的快速开发框架,旨在简化Spring应用的初始搭建以及开发过程。它通过提供一系列的默认配置和约定,使得开发者能够快速地创建出可独立运行的、生产级别的Spring应用程序,极
- 【论文投稿】探秘计算机视觉算法:开启智能视觉新时代
小周不想卷
艾思科蓝学术会议投稿计算机视觉
目录引言一、计算机视觉算法基石:图像基础与预处理二、特征提取:视觉信息的精华萃取三、目标检测:从图像中精准定位目标四、图像分类:识别图像所属类别五、语义分割:理解图像的像素级语义六、计算机视觉算法前沿趋势与挑战引言在当今数字化浪潮中,计算机视觉宛如一颗璀璨的明珠,正深刻地改变着我们与世界的交互方式。从安防监控中的精准识别,到自动驾驶汽车的智能导航;从医疗影像的辅助诊断,到工业生产中的缺陷检测,计算
- 基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测人工智能YOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8
- YOLOv8与Transformer:探索目标检测的新架构
AI架构设计之禅
AI大模型应用入门实战与进阶大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
YOLOv8与Transformer:探索目标检测的新架构关键词:目标检测,深度学习,YOLOv8,Transformer,计算机视觉,卷积神经网络摘要:目标检测是计算机视觉领域的一项重要任务,其目标是从图像或视频中识别和定位特定对象。近年来,YOLO(YouOnlyLookOnce)系列算法以其高精度和高速度成为目标检测领域的佼佼者。最新版本的YOLOv8引入了Transformer架构,进一步
- 像素空间文生图之Imagen原理详解
funNLPer
AI算法ImagenstablediffusionAIGC
论文:PhotorealisticText-to-ImageDiffusionModelswithDeepLanguageUnderstanding项目地址:https://imagen.research.google/代码(非官方):https://github.com/deep-floyd/IF模型权重:https://huggingface.co/DeepFloyd/IF-I-XL-v1.0
- 计算机视觉与深度学习:使用深度学习训练基于视觉的车辆检测器(MATLAB源码-Faster R-CNN)
ZhShy23
javascript深度学习
在人工智能领域,计算机视觉是一个重要且充满活力的研究方向。它使计算机能够理解和分析图像和视频数据,从而做出有意义的决策。其中,目标检测是计算机视觉中的一项关键技术,它旨在识别并定位图像中的多个目标对象。车辆检测作为目标检测的一个重要应用,在自动驾驶、智能交通系统等领域有着广泛的应用前景。本文将介绍如何使用MATLAB和深度学习技术,特别是FasterR-CNN模型,来训练一个车辆检测器。文章目录一
- 【Block总结】CDFA,对比驱动特征聚合模块|即插即用,极大增强特征表达!
AI浩
Block总结计算机视觉深度学习目标检测
论文信息标题:ConDSeg:AGeneralMedicalImageSegmentationFrameworkviaContrast-DrivenFeatureEnhancement作者:MengqiLei,HaochenWu,XinhuaLv,XinWang机构:中国地质大学(武汉),百度公司发表时间:2024年12月11日会议:AAAI2025论文:https://arxiv.org/pdf
- 【开源】基于SpringBoot框架教学资料管理系统(计算机毕业设计)+万字毕业论文 T286
计算机毕业设计_gzs
开源springboot课程设计毕设java后端mybatis
系统合集跳转源码获取链接点击主页更能获取海量源码10年计算机开发经验,主营业务:源码获取、项目二开、语音辅导、远程调试、毕业设计、课程设计、毕业论文、BUG修改一、系统环境运行环境:最好是javajdk1.8,我们在这个平台上运行的。其他版本理论上也可以。IDE环境:Eclipse,Myeclipse,IDEA或者SpringToolSuite都可以tomcat环境:Tomcat7.x,8.x,9
- YOLOv10改进,YOLOv10检测头融合RepConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 2025年flask儿童教育系统程序+论文 可用于计算机毕业设计
zhihao503
flask课程设计python
本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容选题背景关于儿童教育系统的研究,现有研究主要集中在教育技术、教学设计、以及儿童心理学等领域。尽管这些研究为儿童教育提供了丰富的理论基础和实践指导,但专门针对整合了多种教育资源、适应不同年龄段儿童学习需求的综合教育系统的研究仍相对较少。随着信息技术的飞速发展和教育理念的不断
- NLP 中文拼写检测纠正论文 Automatic-Corpus-Generation 代码
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- 深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术
wit_@
cnnpython机器学习深度学习scikit-learn
深入了解卷积神经网络(CNN):图像处理与深度学习的革命性技术导语卷积神经网络(CNN)是现代深度学习领域中最重要的模型之一,特别在计算机视觉(CV)领域具有革命性的影响。无论是图像分类、目标检测,还是人脸识别、语音处理,CNN都发挥了举足轻重的作用。随着技术的不断发展,CNN已经成为了解决众多实际问题的核心工具。但对于许多人来说,CNN仍然是一个相对复杂的概念,尤其是初学者可能会被其背后的数学原
- 【YOLOV8】YOLOV8模型训练train及参数详解
小小小小祥
YOLO
介绍训练深度学习模型涉及为其提供数据并调整其参数,以便它能够做出准确的预测。UltralyticsYOLOv8的训练模式专为有效、高效地训练目标检测模型而设计,充分利用现代硬件的能力。本指南旨在涵盖使用YOLOv8强大功能集训练自定义模型所需的所有细节,帮助你快速入门。为什么选择UltralyticsYOLO进行训练?高效性:无论是单GPU设置还是跨多个GPU扩展,都能充分利用你的硬件。多功能性:
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- NLP 中文拼写检测纠正论文-07-NLPTEA-2020中文语法错误诊断共享任务概述
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- NLP 中文拼写检测纠正论文-04-Learning from the Dictionary
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- NLP 中文拼写检测纠正论文-01-介绍了SIGHAN 2015 包括任务描述,数据准备, 绩效指标和评估结果
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- 基于单片机的开关电源设计(论文+源码)
沐欣工作室_lvyiyi
单片机嵌入式硬件stm32物联网开关电源
本次基于单片机的开关电源节能控制系统的设计中,在功能上设计如下:(1)系统输入220V;(2)系统.输出0-12V可调,步进0.1V;(3)LCD液晶显示实时电压,并且可以通过按键设定;(4)采用BUCK拓扑方式,系统效率大于85%(5).采用PID算法实现闭环控制,具有过流,过压等保护功能根据上述设计目标的功能,确定了如图1所示的整体框图,在主控制器上拟采用51系列的STC12单片机,其运行速度
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。