Webots是专业的移动机器人仿真软件包。它提供了快速的原型制作环境,使用户可以创建具有物理特性(例如质量,关节,摩擦系数等)的3D虚拟世界。用户可以添加简单的被动对象或称为移动机器人的主动对象。这些机器人可以具有不同的移动方案(轮式机器人,有腿机器人或飞行机器人)。此外,它们可能配备有许多传感器和执行器设备,例如距离传感器,驱动轮,摄像机,马达,触摸传感器,发射器,接收器等。最后,用户可以对每个机器人进行单独编程以表现出所需的行为。Webots包含大量机器人模型和控制器程序示例,以帮助用户入门。
Webots还包含许多与真实移动机器人的接口,因此,一旦您模拟的机器人表现出预期的行为,您就可以将其控制程序转移到诸如e-puck,DARwIn-OP,Nao等真实机器人上。可以添加新接口通过相关系统。
Webots中的世界是对机器人及其环境的属性的3D描述。它包含对每个对象的描述:位置,方向,几何形状,外观(如颜色或亮度),物理属性,对象类型等。世界组织为层次结构,其中对象可以包含其他对象(例如VRML97)。例如,一个机器人可以包含两个轮子,一个距离传感器和一个关节,该关节本身包含一个摄像头等。世界文件不包含机器人的控制器代码;它仅指定每个机器人所需的控制器名称。世界保存在“ .wbt”文件中。“ .wbt”文件存储在每个Webots项目的“ worlds”子目录中。
控制器是控制世界文件中指定的机器人的计算机程序。可以使用Webots支持的任何编程语言编写控制器:C,C ++,Java,Python或MATLAB。当模拟开始时,Webots将启动指定的控制器,每个控制器都是一个单独的进程,并将控制器进程与模拟的机器人相关联。请注意,多个机器人可以使用相同的控制器代码,但是将为每个机器人启动一个不同的过程。
一些编程语言需要编译(C和C ++),其他语言需要解释(Python和MATLAB),而另一些则需要同时进行编译和解释(Java)。例如,C和C ++控制器被编译为平台相关的二进制可执行文件(例如Windows下的“ .exe”)。Python和MATLAB控制器由相应的运行时系统(必须安装)解释。Java控制器需要编译为字节码(“ .class”文件或“ .jar”),然后由Java虚拟机进行解释。
每个控制器的源文件和二进制文件一起存储在控制器目录中。控制器目录放置在每个Webots项目的“ controllers”子目录中。
/*
* Copyright 1996-2019 Cyberbotics Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define WHEEL_RADIUS 0.02
#define AXLE_LENGTH 0.052
#define RANGE (1024 / 2)
static void compute_odometry(WbDeviceTag left_position_sensor, WbDeviceTag right_position_sensor) {
double l = wb_position_sensor_get_value(left_position_sensor);
double r = wb_position_sensor_get_value(right_position_sensor);
double dl = l * WHEEL_RADIUS; // distance covered by left wheel in meter
double dr = r * WHEEL_RADIUS; // distance covered by right wheel in meter
double da = (dr - dl) / AXLE_LENGTH; // delta orientation
printf("estimated distance covered by left wheel: %g m.\n", dl);
printf("estimated distance covered by right wheel: %g m.\n", dr);
printf("estimated change of orientation: %g rad.\n", da);
}
int main(int argc, char *argv[]) {
/* define variables */
WbDeviceTag distance_sensor[8], left_motor, right_motor, left_position_sensor, right_position_sensor;
int i, j;
double speed[2];
double sensors_value[8];
double braitenberg_coefficients[8][2] = {{0.942, -0.22}, {0.63, -0.1}, {0.5, -0.06}, {-0.06, -0.06},
{-0.06, -0.06}, {-0.06, 0.5}, {-0.19, 0.63}, {-0.13, 0.942}};
int time_step;
int camera_time_step;
/* initialize Webots */
wb_robot_init();
if (strcmp(wb_robot_get_model(), "GCtronic e-puck2") == 0) {
printf("e-puck2 robot\n");
time_step = 64;
camera_time_step = 64;
} else { // original e-puck
printf("e-puck robot\n");
time_step = 256;
camera_time_step = 1024;
}
/* get and enable the camera and accelerometer */
WbDeviceTag camera = wb_robot_get_device("camera");
wb_camera_enable(camera, camera_time_step);
WbDeviceTag accelerometer = wb_robot_get_device("accelerometer");
wb_accelerometer_enable(accelerometer, time_step);
/* get a handler to the motors and set target position to infinity (speed control). */
left_motor = wb_robot_get_device("left wheel motor");
right_motor = wb_robot_get_device("right wheel motor");
wb_motor_set_position(left_motor, INFINITY);
wb_motor_set_position(right_motor, INFINITY);
wb_motor_set_velocity(left_motor, 0.0);
wb_motor_set_velocity(right_motor, 0.0);
/* get a handler to the position sensors and enable them. */
left_position_sensor = wb_robot_get_device("left wheel sensor");
right_position_sensor = wb_robot_get_device("right wheel sensor");
wb_position_sensor_enable(left_position_sensor, time_step);
wb_position_sensor_enable(right_position_sensor, time_step);
for (i = 0; i < 8; i++) {
char device_name[4];
/* get distance sensors */
sprintf(device_name, "ps%d", i);
distance_sensor[i] = wb_robot_get_device(device_name);
wb_distance_sensor_enable(distance_sensor[i], time_step);
}
/* main loop */
while (wb_robot_step(time_step) != -1) {
/* get sensors values */
for (i = 0; i < 8; i++)
sensors_value[i] = wb_distance_sensor_get_value(distance_sensor[i]);
const double *a = wb_accelerometer_get_values(accelerometer);
printf("accelerometer values = %0.2f %0.2f %0.2f\n", a[0], a[1], a[2]);
/* compute odometry and speed values*/
compute_odometry(left_position_sensor, right_position_sensor);
for (i = 0; i < 2; i++) {
speed[i] = 0.0;
for (j = 0; j < 8; j++)
speed[i] += braitenberg_coefficients[j][i] * (1.0 - (sensors_value[j] / RANGE));
}
/* set speed values */
wb_motor_set_velocity(left_motor, speed[0]);
wb_motor_set_velocity(right_motor, speed[1]);
}
wb_robot_cleanup();
return 0;
}