Elastic-Job源码分析-作业执行

上一篇Elastic-Job源码分析-作业初始化过程.md分析了作业初始化的过程,今天来分析下调度作业的执行过程,首先我们结合作业初始化过程中的createJobDetail来找到调度执行的入口,然后依次分析调度作业执行前、中和后都做了哪些操作。

一 调度执行入口

之前文章我们说过elastic-job是建立在quartz调度框架的基础上进行二次开发的,quartz在创建调度时是用JobDetailImpl中的jobClass成员变量来指定调度触发时真正的作业执行类, 这个作业类实现了Job接口, 例如下面代码段中的LiteJob.class,

/**
 * 作业调度器.
 */
public class JobScheduler {
    /**
     * 创建jobDetail.
     * 将jobFacade和我们最开始新建的MyElasticJob类的实例放入JobDataMap中.
     *
     */
    private JobDetail createJobDetail(final String jobClass) {
        JobDetail result = JobBuilder.newJob(LiteJob.class).withIdentity(liteJobConfig.getJobName()).build();
        /**
         * 将LiteJob的成员变量jobFacade, 对象放入JobDetail的JobDataMap中,
         * quartz会在作业触发时使用jobDataMap中的元素来初始化LiteJob的成员变量,
         * 后面会给出初始化的源码片段。
         */
        result.getJobDataMap().put(JOB_FACADE_DATA_MAP_KEY, jobFacade);
        Optional elasticJobInstance = createElasticJobInstance();
        if (elasticJobInstance.isPresent()) {
            // 和上面的一样,将LiteJob的成员变量elasticJob, 对象放入JobDetail的JobDataMap中
            result.getJobDataMap().put(ELASTIC_JOB_DATA_MAP_KEY, elasticJobInstance.get());
        } else if (!jobClass.equals(ScriptJob.class.getCanonicalName())) {
            try {
                result.getJobDataMap().put(ELASTIC_JOB_DATA_MAP_KEY, Class.forName(jobClass).newInstance());
            } catch (final ReflectiveOperationException ex) {
                throw new JobConfigurationException("Elastic-Job: Job class '%s' can not initialize.", jobClass);
            }
        }
        return result;
    }
}

/**
 * Lite调度作业.
 */
public final class LiteJob implements Job {
    
    @Setter
    private ElasticJob elasticJob;
    @Setter
    private JobFacade jobFacade;
    
    /**
     * 根据elasticJob的实际类型,
     * 通过JobExecutorFactory.getJobExecutor获取对应的JobExecutor
     *
     */
    @Override
    public void execute(final JobExecutionContext context) throws JobExecutionException {
        JobExecutorFactory.getJobExecutor(elasticJob, jobFacade).execute();
    }
}

根据Job的execute方法定位到调用处

public class JobRunShell extends SchedulerListenerSupport implements Runnable {
   ...
    /**
     * run()之前的初始化方法
     */
    public void initialize(QuartzScheduler sched)
        throws SchedulerException {
        this.qs = sched;
    
        Job job = null;
        JobDetail jobDetail = firedTriggerBundle.getJobDetail();

        try {
            /**
             * sched.getJobFactory()获取到PropertySettingJobFactory类对象,
             * 调用其中的newJob(TriggerFiredBundle bundle, Scheduler scheduler)方法         
             */
            job = sched.getJobFactory().newJob(firedTriggerBundle, scheduler);
        }
        ...
    }

    public void run() {
        qs.addInternalSchedulerListener(this);
        try {
            OperableTrigger trigger = (OperableTrigger) jec.getTrigger();
            JobDetail jobDetail = jec.getJobDetail();
            do {
                JobExecutionException jobExEx = null;
                Job job = jec.getJobInstance();
                ...
                try {
                    log.debug("Calling execute on job " + jobDetail.getKey());
                    // 执行LiteJob的execute(final JobExecutionContext context)方法
                    job.execute(jec);
                    endTime = System.currentTimeMillis();
                } ...
            } while (true);

        } finally {
            qs.removeInternalSchedulerListener(this);
        }
    }
    ...
}

public class PropertySettingJobFactory extends SimpleJobFactory {
    ...
    @Override
    public Job newJob(TriggerFiredBundle bundle, Scheduler scheduler) throws SchedulerException {
        Job job = super.newJob(bundle, scheduler);
        JobDataMap jobDataMap = new JobDataMap();
        jobDataMap.putAll(scheduler.getContext());
        jobDataMap.putAll(bundle.getJobDetail().getJobDataMap());
        jobDataMap.putAll(bundle.getTrigger().getJobDataMap());
        /**
         * 这个方法的方法体较长就不展示了,主要就是用jobDataMap中的元素来初始化
         * Job中的成员变量,例如上面的LiteJob.class,其中有两个成员变量,
         * elasticJob和jobFacade就是通过该方式来初始化的。
         */
        setBeanProps(job, jobDataMap);
        return job;
    }
}

public class SimpleJobFactory implements JobFactory {
    ...
    /**
     * 根据JobDetail中的JobClass类来生成一个实例。
     */
    public Job newJob(TriggerFiredBundle bundle, Scheduler Scheduler) throws SchedulerException {
        JobDetail jobDetail = bundle.getJobDetail();
        Class jobClass = jobDetail.getJobClass();
        try {
            if(log.isDebugEnabled()) {
                log.debug(
                    "Producing instance of Job '" + jobDetail.getKey() + 
                    "', class=" + jobClass.getName());
            }
            
            return jobClass.newInstance();
        } catch (Exception e) {
            SchedulerException se = new SchedulerException(
                    "Problem instantiating class '"
                            + jobDetail.getJobClass().getName() + "'", e);
            throw se;
        }
    }
}

至此,整个JobLite的初始化过程结束,以上过程主要是交代下LiteJob中的两个成员变量是如何被初始化的,同时可将LiteJob的execute(final JobExecutionContext context)作为elastic-job作业执行的入口开始今天的主题。

二 获取作业执行器SimpleJobExecutor

/**
 * Lite调度作业.
 */
public final class LiteJob implements Job {
    
    @Setter
    private ElasticJob elasticJob;
    @Setter
    private JobFacade jobFacade;
    
    /**
     * 根据elasticJob的实际类型,
     * 通过JobExecutorFactory.getJobExecutor获取对应的JobExecutor
     *
     * @param context
     * @throws JobExecutionException
     */
    @Override
    public void execute(final JobExecutionContext context) throws JobExecutionException {
        /**
         * 根据elasticJob的类型来获取不同的AbstractElasticJobExecutor实例,
         * 然后执行AbstractElasticJobExecutor的execute()方法。
         */
        JobExecutorFactory.getJobExecutor(elasticJob, jobFacade).execute();
    }
}

public final class JobExecutorFactory {
    
    /**
     * 获取作业执行器.
     *
     * @param elasticJob 分布式弹性作业
     * @param jobFacade 作业内部服务门面服务
     * @return 作业执行器
     */
    @SuppressWarnings("unchecked")
    public static AbstractElasticJobExecutor getJobExecutor(final ElasticJob elasticJob, final JobFacade jobFacade) {
        if (null == elasticJob) {
            return new ScriptJobExecutor(jobFacade);
        }
        /**
         * 我们的Demo中创建的MyElasticJob实现的是SimpleJob接口,
         * 所以此处我们return的是个SimpleJobExecutor类
         */
        if (elasticJob instanceof SimpleJob) {
            return new SimpleJobExecutor((SimpleJob) elasticJob, jobFacade);
        }
        if (elasticJob instanceof DataflowJob) {
            return new DataflowJobExecutor((DataflowJob) elasticJob, jobFacade);
        }
        throw new JobConfigurationException("Cannot support job type '%s'", elasticJob.getClass().getCanonicalName());
    }
}

/**
 * 简单作业执行器.
 */
public final class SimpleJobExecutor extends AbstractElasticJobExecutor {
    
    private final SimpleJob simpleJob;
    
    public SimpleJobExecutor(final SimpleJob simpleJob, final JobFacade jobFacade) {
        super(jobFacade);
        this.simpleJob = simpleJob;
    }
    
    @Override
    protected void process(final ShardingContext shardingContext) {
        simpleJob.execute(shardingContext);
    }
}

LiteJob中根据elasticJob的实际类型获取相应的AbstractElasticJobExecutor子类,然后执行AbstractElasticJobExecutor的execute()方法, 接下来将重点分析AbstractElasticJobExecutor类。

三 ElasticJob执行器抽象类AbstractElasticJobExecutor


/**
 * 弹性化分布式作业执行器.
 */
@Slf4j
public abstract class AbstractElasticJobExecutor {
    ...
    /**
     * 执行作业.
     */
    public final void execute() {
        try {
            // 检查本机与注册中心的时间误差秒数是否在允许范围.
            jobFacade.checkJobExecutionEnvironment();
        } catch (final JobExecutionEnvironmentException cause) {
            jobExceptionHandler.handleException(jobName, cause);
        }
        // 获取分片上下文ShardingContexts
        ShardingContexts shardingContexts = jobFacade.getShardingContexts();
        if (shardingContexts.isAllowSendJobEvent()) {
            // 发布作业启动事件
            jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_STAGING, String.format("Job '%s' execute begin.", jobName));
        }
        // 如果当前调度还在运行中而下一个调度周期已经到来了,则将该分片任务标记为错过执行.
        if (jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())) {
            if (shardingContexts.isAllowSendJobEvent()) {
                // 发布作业启动事件
                jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format(
                        "Previous job '%s' - shardingItems '%s' is still running, misfired job will start after previous job completed.", jobName,
                        shardingContexts.getShardingItemParameters().keySet()));
            }
            return;
        }
        try {
            // 执行弹性化分布式作业监听器接口的beforeJobExecuted方法.
            jobFacade.beforeJobExecuted(shardingContexts);
        } catch (final Throwable cause) {
            jobExceptionHandler.handleException(jobName, cause);
        }
        //执行作业
        execute(shardingContexts, JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);
        /**
         * 如果执行该作业错过的任务时,该分片再次被标记为错过执行任务,
         * 则继续执行错过的任务,直到不再有分片被标记为错过为止
         */
        while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
            // 清除分片任务被错过执行的标记.
            jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
            execute(shardingContexts, JobExecutionEvent.ExecutionSource.MISFIRE);
        }
        // 如果需要失效转移, 则执行作业失效转移.
        jobFacade.failoverIfNecessary();
        try {
            // 执行弹性化分布式作业监听器接口的afterJobExecuted方法.
            jobFacade.afterJobExecuted(shardingContexts);
            //CHECKSTYLE:OFF
        } catch (final Throwable cause) {
            //CHECKSTYLE:ON
            jobExceptionHandler.handleException(jobName, cause);
        }
    }

    /**
     * @param shardingContexts
     * @param executionSource
     */
    private void execute(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
        if (shardingContexts.getShardingItemParameters().isEmpty()) {
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format("Sharding item for job '%s' is empty.", jobName));
            }
            return;
        }
        // 注册作业启动信息, 标记当前分片项为running状态
        jobFacade.registerJobBegin(shardingContexts);
        String taskId = shardingContexts.getTaskId();
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobStatusTraceEvent(taskId, State.TASK_RUNNING, "");
        }
        try {
            process(shardingContexts, executionSource);
        } finally {
            // 注册作业完成信息, 移除running状态标志节点
            jobFacade.registerJobCompleted(shardingContexts);
            if (itemErrorMessages.isEmpty()) {
                if (shardingContexts.isAllowSendJobEvent()) {
                    jobFacade.postJobStatusTraceEvent(taskId, State.TASK_FINISHED, "");
                }
            } else {
                if (shardingContexts.isAllowSendJobEvent()) {
                    jobFacade.postJobStatusTraceEvent(taskId, State.TASK_ERROR, itemErrorMessages.toString());
                }
            }
        }
    }

    private void process(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
        Collection items = shardingContexts.getShardingItemParameters().keySet();
        if (1 == items.size()) {
            int item = shardingContexts.getShardingItemParameters().keySet().iterator().next();
            JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, item);
            process(shardingContexts, item, jobExecutionEvent);
            return;
        }
        // 使用CountDownLatch实现等待多个分片任务全都执行完后再执行后面动作的效果
        final CountDownLatch latch = new CountDownLatch(items.size());
        for (final int each : items) {
            final JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, each);
            if (executorService.isShutdown()) {
                return;
            }
            executorService.submit(new Runnable() {
                @Override
                public void run() {
                    try {
                        process(shardingContexts, each, jobExecutionEvent);
                    } finally {
                        latch.countDown();
                    }
                }
            });
        }
        try {
            latch.await();
        } catch (final InterruptedException ex) {
            Thread.currentThread().interrupt();
        }
    }

    private void process(final ShardingContexts shardingContexts, final int item, final JobExecutionEvent startEvent) {
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobExecutionEvent(startEvent);
        }
        log.trace("Job '{}' executing, item is: '{}'.", jobName, item);
        JobExecutionEvent completeEvent;
        try {
            // 实际要执行的业务逻辑
            process(new ShardingContext(shardingContexts, item));
            completeEvent = startEvent.executionSuccess();
            log.trace("Job '{}' executed, item is: '{}'.", jobName, item);
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobExecutionEvent(completeEvent);
            }
        } catch (final Throwable cause) {
            completeEvent = startEvent.executionFailure(cause);
            jobFacade.postJobExecutionEvent(completeEvent);
            itemErrorMessages.put(item, ExceptionUtil.transform(cause));
            jobExceptionHandler.handleException(jobName, cause);
        }
    }

    /**
     * 实际要执行的业务逻辑
     * @param shardingContext
     */
    protected abstract void process(ShardingContext shardingContext);
}

AbstractElasticJobExecutor抽象类控制作业执行前、后的一些动作,例如事件发布、分片运行状态管理、错过重执行和和失效转移等动作。

总结

本文从createJobDetail 入手,分析了JobLiteJob的两个成员变量 elasticJobjobFacade是如果被传入和初始化的;然后以SimpleJob为例,分析如何获取执行器SimpleJobExecutor;最后重点分析了作业执行过程中都做了哪些事情,通过源码分析了解到,Elastic-job何时控制错误重执行、何时做失效转移动作以及如何控制多个分片的并行执行等。

你可能感兴趣的:(Elastic-Job源码分析-作业执行)