博弈论基础知识--非合作博弈,零和博弈,负和博弈,主从博弈,Nash均衡

这几天看一些crowdsourcing的经典文章,发现经常初选game theory,之前看过一段时间但是没好好整理,重新整理一发

Non-cooperative Game

非合作博弈是指一种参与者不可能达成具有约束力的协议的博弈类型,这是一种具有互不相容味道的情形。非合作博弈研究人们在利益相互影响的局势中如何选决策使自己的收益最大,即策略选择问题。

负和博弈和零和博弈统称为非合作博弈,正和博弈亦称为合作博弈。

零和博弈

零和博弈是博弈论的一个概念,属非合作博弈,指参与博弈的双方,**在严格竞争下,一方的收益必然意味着另一方的损失,**博弈各方的收益和损失相加的总和永远为“零”。双方不存在合作的可能。零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分。

当你看到两位对弈者时,你就可以说他们正在玩“零和游戏”。因为在大多数情况下,总会有一个赢,一个输,如果我们把获胜计算为得1分,而输棋为-1分,那么,这两人得分之和就是:1+(-1)=0。

这正是“零和游戏”的基本内容:游戏者有输有赢,一方所赢正是另一方所输,游戏的总成绩永远是零。

零和游戏原理之所以广受关注,主要是因为人们发现在社会的方方面面都能发现与“零和游戏”类似的局面,胜利者的光荣后面往往隐藏着失败者的辛酸和苦涩。从个人到国家,从政治到经济,似乎无不验证了世界正是一个巨大的“零和游戏”场。这种理论认为,世界是一个封闭的系统,财富、资源、机遇都是有限的,个别人、个别地区和个别国家财富的增加必然意味着对其他人、其他地区和国家的掠夺,这是一个“邪恶进化论”式的弱肉强食的世界。

但20世纪人类在经历了两次世界大战,经济的高速增长、科技进步、全球化以及日益严重的环境污染之后,“零和游戏”观念正逐渐被“双赢”观念所取代。人们开始认识到“利己”不一定要建立在“损人”的基础上。通过有效合作,皆大欢喜的结局是可能出现的。但从“零和游戏”走向“双赢”,要求各方要有真诚合作的精神和勇气,在合作中不要耍小聪明,不要总想占别人的小便宜,要遵守游戏规则,否则“双赢”的局面就不可能出现,最终吃亏的还是自己。

负和博弈

所谓负和博弈,是指双方冲突和斗争的结果,是所得小于所失,就是我们通常所说的其结果的总和为负数,也是一种两败俱伤的博弈,结果双方都有不同程度的损失。

Stackelberg game–主从博弈–mobile computing最常用模型

一方先行动,一方后行动的博弈也称为斯坦克伯格问题,也可称为主从博弈(leader and follower),与经典博弈模型相比,Stackelberg是一个动态的过程。即在经典博弈中的每一个参与人在博弈中地位是一致的,而主从博弈中的参与者的地位是不一致的,跟随者的策略选择依赖于领导者的策略选择。

Stackelberg game往往存在一个均衡的情况,这也是大部分模型想要达到或者计算的case,给一个最经典的例子

假定:某寡头市场上有两个厂商,他们生产相同的产品。

Nash均衡

纳什均衡定义
经济学定义[3]
所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。

维基百科:
在博弈论中,纳什均衡(英语:Nash equilibrium,或称纳什均衡点)是指在包含两个或以上参与者的非合作博弈(Non-cooperative game)中,假设每个参与者都知道其他参与者的均衡策略的情况下,没有参与者可以透过改变自身策略使自身受益时的一个概念解。该术语以约翰·福布斯·纳什命名。在博弈论中,如果每个参与者都选择了自己的策略,并且没有玩家可以透过改变策略而其他参与者保持不变而获益,那么当前的策略选择的集合及其相应的结果构成了纳什均衡。即若 p i ( s ) = m a x r i [ p i ( s ; r i ) ] {\displaystyle p_{i}(s)=max_{r_{i}}[p_{i}(s;r_{i})]} pi(s)=maxri[pi(s;ri)],则称s为纳什均衡点,其中: p i {\displaystyle p_{i}} pi 为参与者i的收获(payoff), s i {\displaystyle s_{i}} si代表所有参与者之策略, r i {\displaystyle r_{i}} ri代表参与者i的一种可能策略, ( s ; r i ) {\displaystyle (s;r_{i})} (s;ri) 指参与者i单方面改变策略为 r i {\displaystyle r_{i}} ri

即,纳什均衡的意思是:任何一方采取的策略都是对其余所有方采取策略组合下的最佳对策;当所有其他人都不改变策略时,为了让自己的收益最大,任何一方都不会(或者无法)改变自己的策略,这个时候的策略组合就是一个纳什均衡

纳什证明了在每个参与者都只有有限种策略选择、并允许混合策略的前提下,纳什均衡一定存在。以两家公司的价格大战为例,纳什均衡意味着两败俱伤的可能:在对方不改变价格的条件下,既不能提价,否则会进一步丧失市场;也不能降价,因为会出现赔本甩卖。于是两家公司可以改变原先的利益格局,通过谈判寻求新的利益评估分摊方案,也就是Nash均衡。类似的推理当然也可以用到选举,群体之间的利益冲突,潜在战争爆发前的僵局,议会中的法案争执等。

你可能感兴趣的:(theory)