正整数分解为几个连续自然数之和

题目:输入一个正整数,若该数能用几个连续正整数之和表示,则输出所有可能的正整数序列。

一个正整数有可能可以被表示为n(n>=2)个连续正整数之和,如:
15=1+2+3+4+5
15=4+5+6
15=7+8

有些数可以写成连续N(>1)个自然数之和,比如14=2+3+4+5;有些不能,比如8.那么如何判断一个数是否可以写成连续N个自然数之和呢?

一个数M若可以写成以a开头的连续n个自然数之和,则M=a+(a+1)+(a+2)+…+(a+n-1)=n*a+n*(n-1)/2,要求a!=0,否则就是以a+1开头的连续n-1个整数了,也就是要求(M-(n+n*(n-1)/2))%n==0,即(M-(n*(n+1)/2))%n==0,这样就很容易判断一个数可不可以写成连续n个自然数的形式了,遍历n=2…sqrt(M)*2,还可以输出所有解。
void divide(int num)
{
	int i,j,a;
	for(i=2; i<=sqrt((float)num)*2; ++i)
	{
		if((num-i*(i-1)/2)%i==0)
		{
			a=(num-i*(i-1)/2)/i;
			if(a>0)
			{
				for(j=0; j

第二个问题是什么样的数可以写成连续n个自然数之和,什么样的数不能?
通过编程实验发现,除了2^n以外,其余所有数都可以写成该形式。下面说明为什么。
若数M符合条件,则有M=a+(a+1)+(a+2)+…+(a+n-1)=(2*a+n-1)*n/2,而2*a+n-1与n肯定一个为奇数一个为偶数,即M一定要有一个奇数因子,而所有2^n都没有奇数因子,因此肯定不符合条件。
再证明只有M有一个奇数因子,即M!=2^n,M就可以写成连续n个自然数之和。假设M有一个奇数因子a,则M=a*b。
1)若b也是奇数,只要b-(a-1)/2>0,M就可以写成以b-(a-1)/2开头的连续a个自然数;将这条结论里的a和b调换,仍然成立。15=3*5=1+2+3+4+5=4+5+6.
2)若b是偶数,则我们有一个奇数a和一个偶数b。
2.1)若b-(a-1)/2>0,M就可以写成以b-(a-1)/2开头的连续a个自然数。24=3*8=7+8+9.
2.2)若(a+1)/2-b>0,M就可以写成以(a+1)/2-b开头的连续2*b个自然数。38=19*2=8+9+10+11.
上述两个不等式必然至少有一个成立,所以可以证明,只要M有一个奇数因子,就一定可以写成连续n个自然数之和。

另一个正整数分解的算法:
/*
sum(i,j)为i累加到j的和 
令 i=1 j=2 
if sum(i,j)>N i++ 
else if sum(i,j) else cout i...j 
*/

C++实现:

#include 
using namespace std;

int add(int m,int n)
{
    int sum=0;
    for(int i=m;i<=n;i++)
        sum+=i;
    return sum;
}

void divide(int num)
{
    int i=1,j=2,flag;
    int sum=0;
    while(i<=num/2)
    {
     sum=add(i,j);
     while(sum!=num)
     {
        if(sum>num)
            i++;
        else
            j++;
        sum=add(i,j);
     }
     for(int k=i;k<=j;k++)
        cout<>num;
    divide(num);
    return 0;
}



你可能感兴趣的:(Algorithm)