- 深度学习实战-使用TensorFlow与Keras构建智能模型
程序员Gloria
Python超入门TensorFlowpython
深度学习实战-使用TensorFlow与Keras构建智能模型深度学习已经成为现代人工智能的重要组成部分,而Python则是实现深度学习的主要编程语言之一。本文将探讨如何使用TensorFlow和Keras构建深度学习模型,包括必要的代码实例和详细的解析。1.深度学习简介深度学习是机器学习的一个分支,使用多层神经网络来学习和表示数据中的复杂模式。其广泛应用于图像识别、自然语言处理、推荐系统等领域。
- 时尚搭配助手,深度解析用Keras构建智能穿搭推荐系统
忆愿
高质量领域文章keras人工智能深度学习机器学习python
文章目录引言:当算法遇见时尚第一章数据工程:时尚系统的基石1.1数据获取的多元化途径1.2数据预处理全流程1.2.1图像标准化与增强1.2.2多模态数据处理第二章模型架构设计:从分类到推荐2.1基础CNN模型(图像分类)2.2多任务学习模型(属性联合预测)第三章推荐算法核心3.1协同过滤与内容推荐的融合第四章系统优化4.1注意力机制应用第五章实战演练5.2实时推荐API实现第六章前沿探索:时尚AI
- 用Keras构建爱情模型:破解情侣间的情感密码
忆愿
高质量领域文章keras人工智能深度学习python机器学习自然语言处理神经网络
文章目录一、给情话穿上数字马甲1.1中文分词那些坑1.2停用词过滤玄学二、给神经网络装个情感温度计2.1记忆增强套餐2.2注意力机制实战三、给模型喂点狗粮数据3.1数据增强七十二变3.2标注的艺术四、调参比哄对象还难4.1超参数扫雷指南4.2可视化调参黑科技五、实战演练之保命指南5.1部署成求生APP5.2案例分析库六、当AI遇见现实:模型局限与伦理困境6.1隐私雷区七、从玩具模型到生产系统7.1
- lstm 输入数据维度_keras中关于输入尺寸、LSTM的stateful问题
weixin_39856269
lstm输入数据维度
补充:return_sequence,return_state都是针对一个时间切片(步长)内的h和c状态,而stateful是针对不同的batch之间的。多层LSTM需要设置return_sequence=True,后面再设置return_sequence=False.最近在学习使用keras搭建LSTM的时候,遇到了一些不明白的地方。有些搞懂了,有些还没有搞懂。现在记下来,因为很快就会忘记!-_
- 英伟达终为 CUDA 添加原生 Python 支持,他有什么目的?
朱卫军 AI
python开发语言
CUDA原来只支持C/C++/Fortran,在2025的CES上宣布支持原生Python其实是不得已而为之,一方面现在Python的AI开发者数量过于庞大,达到数千万级别,而CUDA仅几百万,CUDA想扩大自己的用户圈子,只能拉Python入伙。另一方面,Python生态的计算库实在太强大,比如numpy,几乎垄断了数组计算,还有像scipy、keras等,已经成为机器学习的主流工具,CUDA必
- 使用AutoKeras2.0的AutoModel进行结构化数据回归预测
1、FirstofAll:ReadTheFuckingSourceCodeimportautokerasasakimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportmean_squared_error#生成数据集np.random.seed(42)x=np.random.r
- python2.7.13安装keras记录
呜哇哈哈嗝~
Python基础kerastensorflowpython
keras给出的版本大多对应的是python3.x版本,但有时一些项目需要用到python2.x的环境,版本找起来很麻烦。故喇宝准备写此篇来记录以及总结一下自己的安装过程(也为了防止下次自己又要重新装的时候各种百度不到)!python版本2.7.13condacreate--namepython27python=2.7.13在anaconda中使用命令新建一个名为python27的虚拟环境,新环境
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- Keras环境复现代码(三)
yanyiche_
keras深度学习人工智能
DQN雅达利Breakout强化学习实验要求明确实验目的:学习和实现深度Q学习(DQN),这是一种结合了Q学习和深度神经网络的强化学习算法,用于解决复杂的决策问题。清楚实验原理:1、深度Q学习(DeepQ-Network)将卷积神经网络与Q学习结合,解决高维视觉输入的强化学习问题:2、经验回放:将状态转换存储到缓冲区,打破数据相关性,稳定训练。3、目标网络:定期更新目标Q值计算网络,减少训练中的目
- Keras环境复现代码(二)
yanyiche_
Keras机器学习人工智能
PPOCartPole控制算法实践实验要求明确实验目的:学习和实现PPO算法,这是一种改进的策略梯度方法,通过限制策略更新的幅度来提高训练的稳定性。清楚实验原理:PPO算法是一种基于策略梯度的强化学习算法,它旨在解决传统策略梯度方法(如REINFORCE算法)在训练过程中可能出现的策略更新不稳定问题。PPO算法通过引入一种新的策略更新机制,限制每次更新的幅度,从而提高训练的稳定性和效率。PPO算法
- 深刻解析如何解决在pycharm中导入tensorflow的子模块keras时的报错(导入语法正确)
lovingf
pycharmpythontensorflowkeras
只是导入时报错,但代码仍可以运行1.导入方式正确,但pycharm将其标红2.通过查看tensorflow的官方文件,猜测可能是python版本不适配python需为python3.6-3.9,而我的为python3.113.配置python3.9的环境(详情可看我的另一篇文章),但依然报错4.经过仔细分析,觉得可能是pycharm与tensorflow的适配问题,pycharm无法寻找到tens
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- python打卡训练营Day41
珂宝_
python打卡训练营python
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers#加载和预处理数据(x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data()x_train=x_train.reshape(-1,28,28,1).astype("float32")
- LSTM价格预测模型:基于技术指标与市场情绪数据
pk_xz123456
仿真模型算法深度学习lstm人工智能rnn深度学习开发语言目标检测神经网络
LSTM价格预测模型:基于技术指标与市场情绪数据一、模型架构设计importnumpyasnpimportpandasaspdimporttensorflowastffromsklearn.preprocessingimportStandardScalerfromtensorflow.keras.modelsimportSequentialfrom
- 【深度学习-Day 21】框架入门:神经网络模型构建核心指南 (Keras & PyTorch)
吴师兄大模型
深度学习入门到精通深度学习神经网络keras人工智能pythonpytorchLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Python实现简单的深度学习实践
master_chenchengg
pythonpythonPythonpython开发IT
Python实现简单的深度学习实践Python:通往深度学习世界的钥匙动手搭建你的第一个神经网络模型从零开始,用Python解析MNIST手写数字识别超越基础:使用Keras快速构建卷积神经网络实战演练:训练一个简单的图像分类器Python:通往深度学习世界的钥匙在当今这个数据驱动的时代,Python无疑成为了打开深度学习大门的金钥匙。它不仅语法简洁、易于上手,而且拥有强大的社区支持和丰富的库资源
- 初识 Tensorflow.js【Plan - June - Week 3】
kuiini
Plan人工智能tensorflow人工智能
一、TensorFlow.jsTensorFlow.js是TensorFlow的JavaScript实现,支持在浏览器或Node.js环境中训练和部署机器学习模型。1、TensorFlow.js能做什么?在浏览器中训练机器学习模型加载并使用已有的模型(TensorFlowSavedModel、Keras模型、TensorFlowHub等)在Node.js环境中训练和部署模型将模型从PythonTe
- Keras深度学习框架第十四讲:使用TensorFlow进行多GPU分布式训练
MUKAMO
AIPython应用Keras框架深度学习kerastensorflow
使用TensorFlow进行多GPU分布式训练1、绪论1.1使用TensorFlow进行多GPU分布式训练概念TensorFlow是一个流行的开源机器学习框架,它支持多GPU分布式训练,允许开发者利用多个GPU并行处理数据和模型参数,从而加速训练过程。多GPU分布式训练在深度学习领域尤其重要,因为它可以极大地提高模型的训练速度和效率。在使用TensorFlow进行多GPU分布式训练时,通常需要遵循
- 重新编译一个不支持 AVX、AVX2的 TensorFlow 1.15的python3.7的安装包
babytiger
tensorflow人工智能python
事情是这样的,以前写过一个图像识别程序,是在python3.7centos7上实现的,是要求cpu支持avx指令的,但是最近在一台电脑上部署时发现这台电脑不支持avx的,参才之前的文章在不支持avx指令集的cpu上部署tensorflow及keras._6133指令集-CSDN博客但是安装包没有linux下的python版本,得自己编译生成了。这里面问题也不小。我的系统是ubuntu2404,下载
- AI人工智能深度学习入门指南:从基础到实践_副本
AI大模型应用实战
C人工智能深度学习ai
AI人工智能深度学习入门指南:从基础到实践关键词:人工智能、机器学习、深度学习、神经网络、梯度下降、反向传播、实战案例摘要:本文是为零基础或初级学习者打造的深度学习入门指南。我们将从“人工智能-机器学习-深度学习”的关系讲起,用“教机器人认猫”的故事串联核心概念,结合生活比喻(如“多层蛋糕”解释神经网络)、数学公式(如梯度下降的“下山游戏”)和Python实战代码(用Keras实现手写数字识别),
- Keras.preprocessing.image
kakak_
CV
ImageDataGeneratorImageDataGenerator是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。比如进行旋转,变形,归一化等等。fromkeras.preprocessing.imageimportImageDataGeneratorimage_datagen=ImageDa
- 【深度学习】嘿马深度学习笔记第1篇:深度学习基本概要【附代码文档】
某miao
深度学习笔记人工智能
图片无法加载本教程的知识点为:深度学习介绍1.1深度学习与机器学习的区别TensorFlow介绍2.4张量2.4.1张量(Tensor)2.4.1.1张量的类型TensorFlow介绍1.2神经网络基础1.2.1Logistic回归1.2.1.1Logistic回归TensorFlow介绍总结每日作业神经网络与tf.keras1.3神经网络基础神经网络与tf.keras1.3Tensorflow实
- 如何在Keras中使用Lambda层构建、保存和加载模型
t0_54program
stablediffusion个人开发
在深度学习领域,Keras是一个广受欢迎且易于使用的构建深度学习模型的库。它支持多种常见的层类型,如输入层、全连接层、卷积层、转置卷积层、重塑层、归一化层、随机失活层、展平层以及激活层等。然而,有时我们可能需要对数据执行现有层无法实现的操作,这时Lambda层就派上用场了。本文将详细介绍如何在Keras中使用Lambda层来构建、保存和加载模型。一、使用Keras的函数式API构建模型在Keras
- 深度学习入门:Python搭建简单神经网络模型
缑宇澄
python
在人工智能浪潮中,深度学习凭借强大的特征提取与模式识别能力成为核心技术,而神经网络则是深度学习的基石。从图像识别到自然语言处理,神经网络以独特的结构和学习机制,让计算机能够模拟人类大脑处理复杂信息的过程。本文将带领你从基础理论出发,使用Python和Keras库搭建一个简单的神经网络模型,开启深度学习的探索之旅。一、神经网络基础理论1.1神经元与网络结构神经网络的基本单元是人工神经元(又称节点或单
- 超实用!零基础打造微信表情识别小程序,源码+数据集全公开
Uyker
小程序人工智能前端
一、技术原理与核心模型基础表情分类使用FER(FacialExpressionRecognition)模型,支持7种基础表情识别:愤怒、厌恶、恐惧、快乐、悲伤、惊讶、中性。技术栈:Python+TensorFlow/Keras+OpenCV,模型基于卷积神经网络(CNN),输入48x48灰度图,输出概率分布。情绪强度量化(进阶)三维情绪模型:通过愉悦度(Valence)、唤醒度(Arousal)、
- 外汇交易预测平台:综合经济指标与情绪分析的自适应模型应用
电竞小潘安
本文还有配套的精品资源,点击获取简介:本文介绍了一个名为"Forex_Technical_Analysis_Platform"的外汇技术分析平台,它采用自适应模型,融合经济指标和情绪分析来预测汇率。平台集成了Python、AWS、TensorFlow、Keras、Scrapy和JupyterNotebook等多种现代数据分析工具和技术,以提供高效的决策支持系统。自适应模型能够自我调整,学习历史数据
- 第23篇:AI技术实战:基于深度学习的图像识别与分类
CarlowZJ
AI+Python人工智能深度学习分类
目录一、深度学习在图像识别中的应用(一)卷积神经网络(CNN)的关键组件(二)预训练模型迁移学习二、代码示例(一)使用TensorFlow和Keras实现CNN进行图像分类1.数据准备与预处理2.构建CNN模型3.模型训练与评估(二)使用预训练模型进行迁移学习1.使用ResNet-50预训练模型2.微调预训练模型三、应用场景(一)安防监控(二)医疗影像诊断(三)智能零售(四)工业制造四、注意事项(
- python第三方库
SherlyYang_
Pythonpython
深度学习框架:Tensorflow、Theano包装深度学习框架的库:Keras(tf和Theano)、tflearn(tf)机器学习库:sklearn、Gensim
- 使用PyGAD训练Keras模型:从入门到实践
t0_54program
大数据与人工智能keras人工智能深度学习个人开发
在机器学习领域,如何高效地训练模型是一个关键问题。PyGAD作为一个开源的Python库,为我们提供了利用遗传算法来训练机器学习算法的有力工具,特别是在训练Keras模型方面,展现出独特的优势。一、PyGAD库简介PyGAD允许开发者构建遗传算法,并用于训练各类机器学习算法。它提供了丰富的参数,能针对不同类型的问题定制遗传算法。比如在解决一些复杂的优化问题时,我们可以通过调整这些参数,使遗传算法更
- python第31天打卡
zdy1263574688
python打卡python开发语言
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers,optimizers,utils,datasets#数据加载和预处理函数defload_and_preprocess_data():(x_train,y_train),(x_test,y_test)=datasets.mnist.load_data()#
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D