- TensorFlow:开启智能时代的引擎
科技林总
DeepSeek学AI人工智能
想象一下,计算机能看懂病历、汽车能自动驾驶、机器能创作艺术——这一切的核心,正是深度学习的力量。而推动这场革命的引擎之一,就是今天的主角:**TensorFlow**。---###**一、背景:为什么需要TensorFlow?1.**深度学习的爆发**-传统编程无法解决图像识别、自然语言处理等复杂问题。-神经网络需要高效工具处理海量数据和计算。2.**Google的答案**-2015年开源Tens
- DAY 43 复习日
yizhimie37
python训练营打卡笔记深度学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710第一步:寻找并准备图像数据集在Kaggle等平台上,你可以找到大量用于图像分类任务的数据集,例如英特尔图像分类数据集(IntelImageClassification)或手写数字识别数据集(DigitRecognizer)。对于初学者,一个更便捷的选择是使用像TensorFlow或PyTorch这样深度学习框架内
- 用Tensorflow进行线性回归和逻辑回归(十)
lishaoan77
tensorflow线性回归tensorboard可视化
用TensorBoard可视化线性回归模型TensorBoard是一种可视化工具,用于了解、调试和优化模型训练过程。它使用在执行程序时编写的摘要事件。上面定义的模型使用tf.summary.FileWriter来写日志到日志目录/tmp/lr-train.我们可以用命令调用日志目录的TensorBoard,见Example3-13(TensorBoard已黙认安装与TensorFlow一起).Ex
- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- TensorFlow Serving学习笔记3: 组件调用关系
一、整体架构TensorFlowServing采用模块化设计,核心组件包括:Servables:可服务对象(如模型、查找表)Managers:管理Servable生命周期(加载/卸载)Loaders:负责Servable的初始化状态管理Sources:提供新版本Servable的LoaderAspiredVersions:Servable的期望状态集合Core:连接所有组件的核心枢纽APIs:gR
- 【高频考点精讲】前端AI集成实战:从TensorFlow.js到模型部署
全栈老李技术面试
前端高频考点精讲前端javascripthtmlcss面试题reactvue
前端AI集成实战:从TensorFlow.js到模型部署作者:全栈老李更新时间:2025年5月适合人群:前端初学者、进阶开发者版权:本文由全栈老李原创,转载请注明出处。今天咱们聊聊前端工程师如何玩转AI——没错,用JavaScript就能搞机器学习!我是全栈老李,一个喜欢把复杂技术讲简单的实战派。最近发现不少前端同学对AI既好奇又害怕,其实真没想象中那么难,跟着老李走,30分钟让你亲手部署第一
- 聚焦OpenVINO与OpenCV颜色通道转换的实践指南
颜色通道顺序问题:OpenVINO模型RGB输入与OpenCVBGR格式的转换在计算机视觉任务中,框架间的颜色通道差异常导致模型推理错误。以下方法解决OpenVINO模型需要RGB输入而OpenCV默认输出BGR的问题。理解核心差异OpenCV的imread()函数遵循BGR通道顺序,源于历史摄像头硬件的数据格式。而OpenVINO等深度学习框架多采用RGB顺序,与TensorFlow/PyTor
- python打卡训练营Day41
珂宝_
python打卡训练营python
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers#加载和预处理数据(x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data()x_train=x_train.reshape(-1,28,28,1).astype("float32")
- TensorFlow深度学习模型训练:掌握神经网络的构建与优化
瞎了眼的枸杞
深度学习tensorflow神经网络
引言深度学习是人工智能领域的重要分支,它通过模拟人脑的神经网络结构来解决复杂的数据表示和学习问题。TensorFlow作为目前最受欢迎的深度学习框架之一,为开发者提供了强大的工具和丰富的资源。本文将带你了解如何使用TensorFlow进行深度学习模型的训练和优化。TensorFlow的核心概念什么是TensorFlow?定义:TensorFlow是一个用于数值计算的开源库,特别适合于大规模的机器学
- Tensorflow实现经典CNN网络AlexNet
您懂我意思吧
python开发tensorflowcnn人工智能python
1、概念AlexNet在ILSVRC-2012的比赛中获得top5错误率15.3%的突破(第二名为26.2%),其原理来源于2012年Alex的论文《ImageNetClassificationwithDeepConvolutionalNeuralNetworks》,这篇论文是深度学习火爆发展的一个里程碑和分水岭,加上硬件技术的发展,深度学习还会继续火下去。2、AlexNet网络结构由于受限于当时
- TensorFlow Lite (TFLite) 和 PyTorch Mobile介绍2
追心嵌入式
tensorflowpytorch人工智能
以下是TensorFlowLite(TFLite)和PyTorchMobile两大轻量化框架的核心用途、典型应用场景及在嵌入式开发中的实际价值对比,结合你的OrangePiZero3开发板特性进行说明:TensorFlowLite(TFLite)核心用途嵌入式设备推理:将训练好的TensorFlow模型转换为轻量格式,在资源受限设备(如手机、边缘计算盒子、OrangePi)上高效运行。硬件加速:通
- Spring中如何使用AI
Mn孟
spring人工智能java后端
Spring是一个用于构建Java应用程序的开源框架,它可以与各种AI技术集成。要在Spring中使用AI,首先需要选择一种AI技术,如机器学习、自然语言处理等。然后可以使用SpringBoot来构建应用程序,并使用相应的AI框架或库来实现AI功能。例如,可以使用TensorFlow或PyTorch来实现机器学习功能,使用NLTK或spaCy来实现自然语言处理功能。此外,还可以使用SpringCl
- C++(个人学习总结,不断更新......)
一、初识C++1.1C++简介C++是由BjarneStroustrup研发的,在计算机编程语言中,C++兼容了c语言,又增加了面向对象的机制,同时拥有丰富的库,有标准模板库STL以及很多第三方库,STL中有set、map、hash等容器,第三方库中有Boost库、图形库QT、图库像处理库Opencv、机械学习库Tensorflow等,这些库可以为嵌入式开发提供非常大的支持。1.2C++程序编写#
- LSTM价格预测模型:基于技术指标与市场情绪数据
pk_xz123456
仿真模型算法深度学习lstm人工智能rnn深度学习开发语言目标检测神经网络
LSTM价格预测模型:基于技术指标与市场情绪数据一、模型架构设计importnumpyasnpimportpandasaspdimporttensorflowastffromsklearn.preprocessingimportStandardScalerfromtensorflow.keras.modelsimportSequentialfrom
- python训练Day24 元组和OS模块
小暖星
python训练python开发语言
元组特点:1.有序,可以重复,这一点和列表一样2.元组中的元素不能修改,这一点非常重要,深度学习场景中很多参数、形状定义好了确保后续不能被修改。很多流行的ML/DL库(如TensorFlow,PyTorch,NumPy)在其API中都广泛使用了元组来表示形状、配置等。可以看到,元组最重要的功能是在列表之上,增加了不可修改这个需求元组的创建my_tuple1=(1,2,3)my_tuple2=('a
- TensorFlow:深度学习基础设施的架构哲学与工程实践革新
双囍菜菜
AI深度学习tensorflow架构
TensorFlow:深度学习基础设施的架构哲学与工程实践革新文章目录TensorFlow:深度学习基础设施的架构哲学与工程实践革新一、计算范式革命:从静态图到动态执行的深度架构剖析1.1静态计算图的编译优化体系1.2动态图模式的实现原理1.3混合执行模式的编译原理二、张量计算引擎的深度架构解析2.1运行时核心组件2.2计算图优化技术2.3分布式训练架构三、可微分编程范式的实现奥秘3.1自动微分系
- Python商务数据分析——Python 入门基础知识学习笔记
爱吃代码的小皇冠
python笔记算法数据结构
一、简介1.1Python特性解释型语言:代码无需编译可直接运行,适合快速开发。动态类型:变量类型在运行时确定(如x=1后x="str"仍合法)。面向对象:支持类、对象、继承等特性,代码可复用性强。语法简洁:通过缩进区分代码块,减少括号等冗余符号。1.2应用场景数据分析:Pandas、Numpy等库处理结构化数据。人工智能:TensorFlow、PyTorch构建机器学习模型。Web开发:Djan
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- Cross-stitch Networks for Multi-task Learning 项目教程
童香莺Wyman
Cross-stitchNetworksforMulti-taskLearning项目教程Cross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Network
- 探索多任务学习的新维度:Cross-stitch Networks
计蕴斯Lowell
探索多任务学习的新维度:Cross-stitchNetworksCross-stitch-Networks-for-Multi-task-LearningATensorflowimplementationofthepaperarXiv:1604.03539项目地址:https://gitcode.com/gh_mirrors/cr/Cross-stitch-Networks-for-Multi-t
- TensorFlow 安装与 GPU 驱动兼容(h800)
weixin_44719529
tensorflowneo4j人工智能
环境说明TensorFlow安装与GPU驱动兼容CUDA/H800特殊注意事项PyCharm和终端环境变量设置方法测试GPU是否可用的Python脚本#使用TensorFlow2.13在NVIDIAH800上启用GPU加速完整指南在使用TensorFlow进行深度学习训练时,充分利用GPU能力至关重要。本文记录了在Linux环境下使用TensorFlow2.13搭配NVIDIAH800GPU的完整
- 非root用户在服务器(linux-Ubuntu16.04)上安装cuda和cudnn,tensorflow-gpu1.13.1
码小花
模型测试环境搭建
1.准备工作(下载CUDA10.0和cudnn安装包)查看tensorflow和CUDA,cudnn的版本的对应关系,从而选择合适的版本进行下载下载CUDA10.0安装包,点击官网进行下载,根据服务器的具体情况选择对应的版本,如下图所示下载完毕后得到安装包cuda_10.0.130_410.48_linux.run下载cudnn,选择CUDA10.0对应的版本(需要注册登录nvidia账号),点击
- 如何安装Tensorflow和GPU配置
神隐灬
tensorflow学习tensorflow人工智能python
课题组某一台服务器升级后,很多环境丢失了,4块3090的GPU的驱动已安装好,但没有公用的Tensorflow可使用。于是自己鼓捣了一番Tensorflow的安装,等管理员安装公用的环境不知道要到猴年马月……服务器是Linux系统(CentOS),GPU是英伟达公司的3090,已经安装好驱动,可以通过命令看到相关信息:$nvidia-smiTueMay2820:54:092024+--------
- 非 root 用户安装 cuDNN 并配置 TensorFlow 使用 GPU
为非root用户安装cuDNN并配置TensorFlow使用GPU(以CUDA11.5为例)背景说明在科研服务器或非root权限环境下,用户往往无法通过apt或yum安装CUDA/cuDNN。本文以CUDA11.5和cuDNN8.3.3为例,演示如何手动下载并配置cuDNN,使TensorFlow成功识别GPU并启用加速。第一步:确认已安装CUDAnvcc--version示例输出:Cudacom
- 用Tensorflow进行线性回归和逻辑回归(一)
lishaoan77
tensorflowtensorflow线性回归逻辑回归
这一章告诉你如何用TensorFlow构建简单的机器学习系统。第一部分回顾构建机器学习系统的基础特别是讲函数,连续性,可微性。接着我们介绍损失函数,然后讨论机器学习归根于找到复杂的损失函数最小化的点的能力。我们然后讲梯度下降,解释它如何使损失最小。然后简单的讨论自动微分的算法思想。第二节侧重于介绍基于这些数学思想的TensorFlow概念。包括placeholders,scopes,optimiz
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 程序代码篇---ESP32-S3小智固件
Atticus-Orion
深度学习篇程序代码篇上位机知识篇AIEsp32-S3小智
Q1:ESP32-S3小智语音对话系统的整体架构是怎样的?A1:该系统采用“语音采集→唤醒词检测→ASR→NLP→TTS→语音播放”的流水线架构:硬件层:ESP32-S3芯片+麦克风阵列(如INMP441)+扬声器(如MAX98357A)。驱动层:ESP-IDF或Arduino框架提供的I2S、ADC、DAC驱动。算法层:唤醒词检测:基于MicroML(如TensorFlowLiteMicro)。
- faster rcnn预训练模型_Faster-RCNN+TensorFlow 详细训练过程(附github源码)
weixin_39958631
fasterrcnn预训练模型
图片来源于网络图片来源于网络1、训练平台:R53600、RTX2060Super,16G运行内存。2、源码地址:https://github.com/dBeker/Faster-RCNN-TensorFlow-Python33、使用git下载源码,gitclonehttps://github.com/dBeker/Faster-RCNN-TensorFlow-Python3.git项目整体代码结构
- 基于Tensorflow的线性回归
用Tensorflow求逆矩阵用Tensorflow实现矩阵分解用Tensorflow实现线性回归理解线性回归中的损失函数用Tensorflow实现戴明回归(DemingRegression)用Tensorflow实现Lasson回归和岭回归(RidgeRegression)用Tensorflow实现弹性网络回归(ElasticNetRegression)用Tensorflow实现逻辑回归文章目录
- 初识 Tensorflow.js【Plan - June - Week 3】
kuiini
Plan人工智能tensorflow人工智能
一、TensorFlow.jsTensorFlow.js是TensorFlow的JavaScript实现,支持在浏览器或Node.js环境中训练和部署机器学习模型。1、TensorFlow.js能做什么?在浏览器中训练机器学习模型加载并使用已有的模型(TensorFlowSavedModel、Keras模型、TensorFlowHub等)在Node.js环境中训练和部署模型将模型从PythonTe
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag