Problem Description
There are N (2<=N<=600) cities,each has a value of happiness,we consider two cities A and B whose value of happiness are VA and VB,if VA is a prime number,or VB is a prime number or (VA+VB) is a prime number,then they can be connected.What’s more,the cost to connecte two cities is Min(Min(VA , VB),|VA-VB|).
Now we want to connecte all the cities together,and make the cost minimal.
Input
The first will contain a integer t,followed by t cases.
Each case begin with a integer N,then N integer Vi(0<=Vi<=1000000).
Output
If the all cities can be connected together,output the minimal cost,otherwise output “-1”;
Sample Input
2
5
1
2
3
4
5
4
4
4
4
4
Sample Output
4
-1
解题报告
题意就是有N座城市,每个城市有一定的幸福值a[i]。对于任意两个城市i和j,如果a[i],a[j],a[i]+a[j]中任意一者的值为素数,那么他们的边权就是min(min(a[i],a[j]),abs(a[i]-a[j]))。问题就是这一幅图的最小生成树。
显然,边一旦建出来了,这就是一道裸题。
#include
#include
#include
#include
using namespace std;
const int N=600;
const int M=600*600;
const int H=1000000*2;
const int INF=522133279;
int head[N+5],num,father[N+5];
int n;
int hap[N+5];
bool prime[H*2+5];
int T;
struct edge
{
int u,v;
int w;
int next;
edge(){next=-1;}
bool operator<(const edge& b)const
{return w2];
inline void build(int u,int v,int w)
{
ed[++num].u=u;
ed[num].v=v;
ed[num].w=w;
ed[num].next=head[u];
head[u]=num;
}
int getfather(int x)
{
return father[x]!=x?(father[x]=getfather(father[x])):x;
}
inline int unionn(int x,int y)
{
return ((x=getfather(x))!=(y=getfather(y)))&&(father[x]=y);
}
void pri()
{
prime[0]=1,prime[1]=1,prime[2]=0;
for(int i=2;i<=H;i++)
if(!prime[2])
{
for(int j=i+i;j<=H;j+=i)
prime[j]=1;
}
}
inline int kruskal()
{
int ans=0;
int tot=0;
for(int i=1;i<=n;++i)
father[i]=i;
sort(ed+1,ed+1+num);
for(int i=1;i<=num;++i)
{
int u=getfather(ed[i].v),v=getfather(ed[i].u);
if(u!=v)
{
++tot,ans+=ed[i].w;
unionn(u,v);
}
if(tot==n-1)return ans;
}
return -1;
}
inline int w(int i,int j)
{
if(!prime[i]||!prime[j]||!prime[i+j])
return min(min(i,j),abs(i-j));
}
int main()
{
pri();
for(scanf("%d",&T);T;T--)
{
num=0;
memset(head,-1,sizeof(head));
memset(hap,0,sizeof(hap));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&hap[i]);
for(int j=1;j<=i-1;j++)
{
if(!prime[hap[i]]||!prime[hap[j]]||!prime[hap[i]+hap[j]])
{
build(i,j,w(hap[i],hap[j]));
build(j,i,w(hap[i],hap[j]));
}
}
}
printf("%d\n",kruskal());
}
return 0;
}