Dubbo RPC服务框架支持丰富的传输协议、序列化方式等通讯相关的配置和扩展。dubbo执行一次RPC请求的过程大致如下:消费者(Consumer)向注册中心(Registry)执行RPC请求,注册中心分配服务URL并路由到具体服务提供方(Provider),消费者和服务提供方建立网络连接,服务提供方在本地创建连接池对象并提供远程服务,对于长连接类型协议(如dubbo协议)将保持连接,减少握手认证,调用过程中可以避免频繁建立和断开连接导致的性能开销,保持长连接需要有心跳包的发送,所以对于非频繁调用的服务保持连接同样会有消耗。更多关于dubbo详细介绍请参照官方文档(http://alibaba.github.io/dubbo-doc-static/Home-zh.htm)。
1、支持常见的传输协议:RMI、Dubbo、Hessain、WebService、Http等,其中Dubbo和RMI协议基于TCP实现,Hessian和WebService基于HTTP实现。
2、传输框架:Netty、Mina、以及基于servlet等方式。
3、序列化方式:Hessian2、dubbo、JSON(fastjson 实现)、JAVA、SOAP 等。
本文主要基于dubbo框架下的通讯协议进行性能测试对比。
基于dubbo 2.5.3框架,使用zookeeper作为dubbo服务注册中心,分别以单线程和多线程的方式测试以下方案:
Protocol | Transporter | Serialization | Remark | |
A | dubbo 协议 | netty | hessian2 | |
B | dubbo 协议 | netty | dubbo | |
C | dubbo 协议 | netty | java | |
D | RMI 协议 | netty | java | |
E | RMI 协议 | netty | hessian2 | |
F | Hessian 协议 | servlet | hessian2 | Hessian,基于tomcat容器 |
G | WebService 协议 | servlet | SOAP | CXF,基于tomcat容器 |
1、单POJO对象,嵌套复杂集合类型
2、POJO集合,包含100个单POJO对象
3、1K字符串
4、100K字符串
5、1M字符串
1、服务接口相关代码:
package ibusiness; import java.util.List; import model.*; public interface IBusinessOrder { public String SendStr(String str); public ListLoadOrders(List orders); public OrderInfo LoadOrder(OrderInfo order); }
2、服务实现相关代码,测试数据在服务器端不做任何处理原样返回:
package business; import ibusiness.IBusinessOrder; import java.util.List; import model.*; public class BusinessOrder implements IBusinessOrder { public String SendStr(String str) { return str; } public ListLoadOrders(List orders) { return orders; } public OrderInfo LoadOrder(OrderInfo order) { return order; } }
1、测试仅记录rpc调用时间,测试数据的读取组装以及首次建立连接等相关耗时时间不作统计,循环执行100次取平均值。
2、服务消费方测试代码
import java.util.List; import org.springframework.context.ApplicationContext; import org.springframework.context.support.FileSystemXmlApplicationContext; import com.alibaba.dubbo.rpc.service.EchoService; import common.Common; import ibusiness.*; import model.*; public class Program { public static void main(String[] args) throws Exception { ApplicationContext ctx = new FileSystemXmlApplicationContext("src//applicationContext.xml"); IBusinessOrder orderBusiness = (IBusinessOrder) ctx.getBean("orderBusiness"); // EchoService echoService = (EchoService) orderBusiness; // String status = echoService.$echo("OK").toString(); // if (!status.equals("OK")) { // System.out.println("orderBusiness out of service!"); // return; // } else { // System.out.println("orderBusiness in service !"); // } long startMili, endMili; int loop = 100; // 单个pojo try { OrderInfo order = Common.BuildOrder(); orderBusiness.LoadOrder(order); // 防止首次连接的开销 startMili = System.currentTimeMillis(); OrderInfo returnOrder = null; for (int i = 0; i < loop; i++) { returnOrder = orderBusiness.LoadOrder(order); } endMili = System.currentTimeMillis(); System.out.println("单个pojo 平均传输耗时为:" + ((endMili - startMili) / (float) loop) + "毫秒 ,返回对象BillNumber:" + returnOrder.getBillNumber()); } catch (Exception ex) { System.out.println("单个pojo 测试失败!"); //ex.printStackTrace(); } // pojo集合 (100) try { ListorderList = Common.BuildOrderList(); startMili = System.currentTimeMillis(); List returnOrderList = null; for (int i = 0; i < loop; i++) { returnOrderList = orderBusiness.LoadOrders(orderList); } endMili = System.currentTimeMillis(); System.out.println("pojo集合 (100) 平均传输耗时为:" + ((endMili - startMili) / (float) loop) + "毫秒 ,返回记录数:" + returnOrderList.size()); } catch (Exception ex) { System.out.println("pojo集合 (100) 测试失败!"); } // 1K String try { String str1k = Common.Build1KString(); startMili = System.currentTimeMillis(); String returnStr1k = null; for (int i = 0; i < loop; i++) { returnStr1k = orderBusiness.SendStr(str1k); } endMili = System.currentTimeMillis(); System.out.println("1K String 平均传输耗时为:" + ((endMili - startMili) / (float) loop) + "毫秒,返回字符长度:" + returnStr1k.length()); } catch (Exception ex) { System.out.println("1K String 测试失败!"); } // 100K String try { String str100K = Common.Build100KString(); startMili = System.currentTimeMillis(); String returnStr100k = null; for (int i = 0; i < loop; i++) { returnStr100k = orderBusiness.SendStr(str100K); } endMili = System.currentTimeMillis(); System.out.println("100K String 平均传输耗时为:" + ((endMili - startMili) / (float) loop) + "毫秒,返回字符长度:" + returnStr100k.length()); } catch (Exception ex) { System.out.println("100K String 测试失败!"); } // 1M String try { String str1M = Common.Build1MString(); startMili = System.currentTimeMillis(); String returnStr1M = null; for (int i = 0; i < loop; i++) { returnStr1M = orderBusiness.SendStr(str1M); } endMili = System.currentTimeMillis(); System.out.println("1M String 平均传输耗时为:" + ((endMili - startMili) / (float) loop) + "毫秒,返回字符长度:" + returnStr1M.length()); } catch (Exception ex) { System.out.println("1M String 测试失败!"); } System.out.println("all test done!"); } }
3、测试数据耗时记录
A、dubbo 协议、netty 传输、hessian2 序列化
单个POJO | 0.958毫秒 |
POJO集合 (100) | 1.438毫秒 |
1K String | 0.68毫秒 |
100K String | 4.262毫秒 |
1M String | 32.473毫秒 |
B、dubbo 协议、netty 传输、dubbo 序列化
单个POJO | 1.45毫秒 |
POJO集合 (100) | 3.42毫秒 |
1K String | 0.94毫秒 |
100K String | 4.35毫秒 |
1M String | 27.92毫秒 |
C、dubbo 协议、netty 传输、java 序列化
单个POJO | 1.91毫秒 |
POJO集合 (100) | 4.48毫秒 |
1K String | 1.0毫秒 |
100K String | 3.3毫秒 |
1M String | 18.09毫秒 |
D、RMI 协议、netty 传输、java 序列化
单个POJO | 1.63毫秒 |
POJO集合 (100) | 5.15毫秒 |
1K String | 0.77毫秒 |
100K String | 2.15毫秒 |
1M String | 15.21毫秒 |
E、RMI 协议、netty 传输、hessian2 序列化
单个POJO | 1.63毫秒 |
POJO集合 (100) | 5.12毫秒 |
1K String | 0.76毫秒 |
100K String | 2.13毫秒 |
1M String | 15.11毫秒 |
F、Hessian协议、servlet(tomcat容器)、hessian2 序列化
单个POJO | 1.6毫秒 |
POJO集合 (100) | 5.98毫秒 |
1K String | 1.88毫秒 |
100K String | 5.52毫秒 |
1M String | 39.87毫秒 |
G、WebService协议、servlet(tomcat容器)、SOAP序列化
单个POJO | 7.4毫秒 |
POJO集合 (100) | 34.39毫秒 |
1K String | 6.0毫秒 |
100K String | 7.43毫秒 |
1M String | 34.61毫秒 |
4、性能对比
1、由于测试机器配置较低,为了避免达到CPU瓶颈,测试设定服务消费方Consumer并发10个线程,每个线程连续对远程方法执行5次调用,服务提供方设置允许最大连接数100个,同时5个连接并行执行,超时时间设置为5000ms,要求所有事务都能正确返回没有异常,统计包含首次建立连接的消耗时间。
2、服务消费方测试代码
3、测试数据耗时记录
A、dubbo 协议、netty 传输、hessian2 序列化
单个POJO | 1165毫秒 |
POJO集合 (100) | 1311毫秒 |
1K String | 1149毫秒 |
100K String | 1273毫秒 |
1M String | 2141毫秒 |
B、dubbo 协议、netty 传输、dubbo 序列化
单个POJO | 1220毫秒 |
POJO集合 (100) | 1437毫秒 |
1K String | 1145毫秒 |
100K String | 1253毫秒 |
1M String | 2065毫秒 |
C、dubbo 协议、netty 传输、java 序列化
单个POJO | 1188毫秒 |
POJO集合 (100) | 1401毫秒 |
1K String | 1123毫秒 |
100K String | 1227毫秒 |
1M String | 1884毫秒 |
D、RMI 协议、netty 传输、java 序列化
单个POJO | 1751毫秒 |
POJO集合 (100) | 1569毫秒 |
1K String | 1766毫秒 |
100K String | 1356毫秒 |
1M String | 1741毫秒 |
E、RMI 协议、netty 传输、hessian2 序列化
单个POJO | 1759毫秒 |
POJO集合 (100) | 1968毫秒 |
1K String | 1239毫秒 |
100K String | 1339毫秒 |
1M String | 1736毫秒 |
F、Hessian协议、servlet、hessian2 序列化
单个POJO | 1341毫秒 |
POJO集合 (100) | 2223毫秒 |
1K String | 1800毫秒 |
100K String | 1916毫秒 |
1M String | 2445毫秒 |
G、WebService协议、servlet、SOAP序列化
单个POJO | 1975毫秒 |
POJO集合 (100) | 2768毫秒 |
1K String | 1894毫秒 |
100K String | 2098毫秒 |
1M String | 2887毫秒 |
4、性能对比
测试过程中尽管考虑了非常多的影响因素,但仍然有很多局限性,包括连接数限制、并发量、线程池策略、Cache、IO、硬件性能瓶颈等等因素,而且各自的适用场景不同,测试结果仅供参考。
从单线程测试结果可以看出,dubbo协议采用NIO复用单一长连接更适合满足高并发小数据量的rpc调用,而在大数据量下的传输性能并不好,建议使用rmi协议,多线程测试中dubbo协议对小数据量的rpc调用同样保持优势,在大数据量的传输中由于长连接的原因对比rmi协议传输耗时差距并不明显,这点同样验证了上述观点。关于数据的序列化方式选择需要考虑序列化和反序列化的效率问题,传输内容的大小,以及格式的兼容性约束,其中hessian2作为duobb协议下的默认序列化方式,推荐使用。
如果有描述错误或者不当的地方欢迎指正。
转载文章:http://www.mamicode.com/info-detail-494195.html PS:感谢原博客主的创作,本人转载是为了方便以后查看