- 【机器学习】算法分类
CH3_CH2_CHO
什么?!是机器学习!!机器学习算法有监督学习无监督学习半监督学习强化学习
1、有监督学习1.1定义使用带标签的数据训练模型。有监督学习是机器学习中最常见的一种类型,它利用已知的输入特征和对应的输出标签来训练模型,使模型能够学习到特征与标签之间的映射关系。在训练过程中,模型会不断地调整自身的参数,以最小化预测值与真实标签之间的误差,从而提高预测的准确性。1.2回归问题1.2.1目标预测连续值。回归问题的目标是预测一个连续的数值结果,模型的输出是一个实数值。1.2.2解释回
- 数据结构——链表专项
seven——seven
linuxmailbox之线程邮箱数据结构链表算法
数据结构的总结1.定义一组用来保存一种或者多种特定关系的数据的集合(组织和存储数据)程序的设计:将现实中大量而复杂的问题以特定的数据类型和特定的存储结构存储在内存中,并在此基础上实现某个特定的功能的操作;程序=数据结构+算法高内聚,低耦合2.数据与数据之间的关系数据的逻辑结构:数据元素与元素之间的关系集合:关系平等线性结构:元素之间一对一的关系(表,队列。栈。。。)树型结构:元素之间一对多的关系(
- Linux内核中的数据结构与算法(三)哈希链表
木木0o0欧尼
Linux链表数据结构linux
四,哈希链表谈到链表就不得不谈Linux内核中另外一个重要的结构,哈希链表。讨论这个结构前,你需要对哈希的最基本的概念要清楚哦,由于我们已经讲过Linux内核中的普通链表的结构,这里我们对比他们的区别来了解哈希链表会直观一些。Linux链表认为双指针表头双循环链表对于HASH表来说过于浪费,因而设计了一套用于HASH表的hlist的数据结构,单指针表头双循环链表。hlish表头仅有一个指向首节点的
- 探索Google AI聊天模型的集成和使用
qahaj
人工智能python
随着人工智能的飞速发展,GoogleAI的聊天模型提供了强大的自然语言处理能力,可以应用于多种场景中。本文将为你介绍如何通过GoogleAI和LangChain库来使用这些聊天模型。技术背景介绍GoogleAI提供了一系列强大的聊天模型,这些模型具备不同的功能和参数设置。它们不仅可以通过GoogleAI服务访问,还可以通过GoogleCloudVertexAI以企业级功能使用。在本文中,我们将重点
- 多种方法判断一个数是否为素数的实现与优化
徐浪老师
徐浪老师大讲堂数据结构算法
素数,又称质数,是一个在数学和计算机科学中非常重要的概念。它是大于1的自然数中,除了1和它本身,不能被其他数整除的数。本文将从最基础的方法讲解到优化算法,并提供完整的实现代码,帮助您高效地判断一个数是否为素数。一、素数的基础知识1.1素数的定义素数:一个大于1的正整数,只有两个正因子:1和它本身。例如:2、3、5、7、11等。非素数:大于1的数中,可以被除1和本身以外的数整除的数。例如:4、6、8
- 代码随想录算法训练营DAY59|110.字符串接龙、105.有向图的完全可达性、106. 岛屿的周长
阿緑
代码随想录打卡算法
110.字符串接龙fromcollectionsimportdequedeffindshortestpath(strlist,beginstr,endstr):que=deque()visited={}que.append(beginstr)visited[beginstr]=1result=0whileque:cur=que.popleft()result=visited[cur]foriinr
- “租赁业务ERP+deepseek”模式的应用
软件研究员
汽车DeepSeek汽车租赁系统
汽车租赁业务从上世纪90年代发展至今,从传统的人工管理到软件辅助,随着互联网的发展,业务公司对汽车租赁系统提出了更高的要求,比如自助订单,业务推广、客户资质评估,车辆风控,风险预警等,又随着近期人工智能的出现,业务公司对业务系统的期望更高,期望都节约更多人工成本,让管理变得简单快捷高效和智能。所以就引发人们新的启发:“业务系统ERP+deepseek”,但业务系统ERP+deepseek能否满足业
- 基于NanoDet的无人机交通违规监控系统设计与实现
深度学习&目标检测实战项目
NanoDet无人机目标检测人工智能计算机视觉深度学习
1.引言随着无人机技术的发展,无人机在交通监控领域的应用逐渐增多。无人机能够提供空中视角,具有更高的视野覆盖范围,能够帮助交通管理部门实时监控交通违规行为。本博客将介绍如何使用NanoDet模型实现无人机交通违规监控系统,并结合PyQt5设计一个UI界面来实时展示检测结果。通过该系统,能够检测交通违规行为并做出实时预警,确保交通安全。本博客详细介绍了数据集的构建、模型的训练与推理、碰撞检测算法的实
- P3375 【模板】KMP
好好学习^按时吃饭
算法
题目来自洛谷网站:思路:从题目名字知道这是KMP模板题目,对于KMP算法,就两步,1、构造next数组。2、在s1中找到s2出现的位置。KMP代码:#includeusingnamespacestd;constintN=1e6+10;chars1[N],s2[N];//全局变量名字不能定义为next//C++标准库中有一个函数名字是nextintnext1[N];//ne数组intmain(){/
- 机器学习——分类、回归、聚类、LASSO回归、Ridge回归(自用)
代码的建筑师
模型学习模型训练机器学习机器学习分类回归正则化项LASSORidge朴素
纠正自己的误区:机器学习是一个大范围,并不是一个小的方向,比如:线性回归预测、卷积神经网络和强化学都是机器学习算法在不同场景的应用。机器学习最为关键的是要有数据,也就是数据集名词解释:数据集中的一行叫一条样本或者实例,列名称为特征或者属性。样本的数量称为数据量,特征的数量称为特征维度机器学习常用库:Numpy和sklearn朴素的意思是特征的各条件都是相互独立的机器学习(模型、策略、算法)损失函数
- 异步编程中的并发编程优化
AI天才研究院
架构师必知必会系列自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明什么是异步编程?为什么要异步编程?浅谈异步编程模型基于事件驱动的模型基于消息队列的模型基于协程的模型为什么要进行并发优化?3.基本算法原理和具体操作步骤1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7.缓存8.异步框架9.模型选择4.具体代码实例和解释说明模块划分1.串行执行2.并行执行3.任务分片4.超时重试5.异步回调6.消息队列7
- 不懂英语可以学编程吗?,不懂英文可以学编程吗
P5688346
人工智能
大家好,给大家分享一下英语不好能学python编程吗,很多人还不知道这一点。下面详细解释一下。现在让我们来看看!Sourcecodedownload:本文相关源码提到人工智能,就不得不提Python编程语言,大多数人觉得编程语言肯定会涉及到很多代码,满屏的英文字母,想想就头疼,觉得自己不会英语,肯定学不好Python,但是不会英语到底能不能够学习Python呢,下面小编给大家分析分析。其实各位想要
- 算法训练(leetcode)第四十六天 | 110. 字符串接龙、105. 有向图的完全可达性、106. 岛屿的周长
Star Patrick
刷题日记算法leetcode职场和发展
刷题记录*110.字符串接龙105.有向图的完全可达性邻接矩阵邻接表106.岛屿的周长深搜简化代码*110.字符串接龙题目地址使用广搜。本题相当于求最短路径,因此使用广搜。如何应用广搜是一个难点,因为题目给的是字符串而非图的表示(邻接矩阵、邻接表),因此需要自行构建连接关系。题目要求每一步只能修改一个字符,因此从起始字符串开始,对字符串中的每一个字符进行修改,修改后在输入的字符串列表中查找是否存在
- Java架构师成长之路
hweiyu00
分享spring微服务springcloudjava
概述本教程主要从6个方面,全面讲解Java技术栈的知识。1.性能调优深入理解MySQL底层原理、索引逻辑,数据结构与算法。使用Explain进行优化分析MVCC原理剖析日志机制解析2.框架源码掌握Spring底层原理带你手写一个Spring解析IOC、AOP源码、以及事务原理3.并发编程剖析Java底层锁机制CAS、JUC工具使用、AQS源码分析以及并发的集合类的讲解4.分布式开发剖析分布式中使用
- 笔记:代码随想录算法训练营day60:并查集理论基础、寻找存在的路径
jingjingjing1111
笔记
本文为学习并查集理论基础|代码随想录、代码随想录过程中的思考find是找的顶头上司,而不是当前上司,最后怎么也得找到一个顶头上司的上司是自己,要不然这个结构也不成立使用issame替换会使被操作者为当前节点,而非根节点。join(u,v)的功能为将v的根节点挂到u的根节点下模拟过程可以看出,join中的find中的路径压缩要在长度大于2(路径大于1)的时候才会体现出来107.寻找存在的路径卡码网题
- 【Matlab光伏功率预测】基于RF随机森林算法的多变量光伏功率预测(附MATLAB代码)
天天科研工作室
光伏功率预测算法matlab随机森林机器学习
【Matlab光伏功率预测】基于RF随机森林算法的多变量光伏功率预测(附MATLAB代码)文章目录【Matlab光伏功率预测】基于RF随机森林算法的多变量光伏功率预测(附MATLAB代码)文章介绍基本步骤代码分享运行结果参考资料文章介绍随机森林可以应用于光伏功率预测,这是一项重要的任务,旨在估计光伏发电系统的输出功率。光伏功率预测在可再生能源管理、电网调度和能源计划等领域具有广泛的应用。随机森林回
- Golang算法(二)数据结构
小烧卖
算法GO语言
数据结构栈队列双向链表二叉搜索树红黑树栈typeStackstruct{head*Node}typeNodestruct{datainterface{}next*Node}funcNewStack()*Stack{s:=&Stack{head:&Node{data:nil,next:&Node{},},}returns}func(s*Stack)Push(datainterface{}){n:=&
- 《当人工智能遇上广域网:跨越地理距离的通信变革》
程序猿阿伟
人工智能
在数字化时代,广域网作为连接全球信息的纽带,让数据能够在不同地区的网络之间流动。然而,地理距离给广域网数据传输带来诸多挑战,如高延迟、低带宽、信号衰减和不稳定等问题。幸运的是,飞速发展的人工智能技术为解决这些难题提供了新的方向,开启了广域网传输的新篇章。广域网传输面临的地理挑战广域网覆盖范围极为广泛,可连接不同城市、国家甚至跨越洲际,这使得数据传输要跨越漫长的地理距离。以跨国公司的广域网为例,其总
- 某人想将手中的一张面值100元的人民币换成10元、5元、2元和1元面值的票子。要求换正好40张,且每种票子至少一张。问:有几种换法?(C语言)
热心市民小汪
代码练习C语言c语言学习java
一、首先分析题目有两点1、总和是100元。2、一共分为四十张且每种至少有一张。二、思路分析。10元的为s张,5元的为w张,2元的为e张,1元的为y张。n为有几种换算法首先,每个至少有一张a>=1,b>=1,c>=1,d>=1。#includeintmain(){inttotal;for(ints=1;s<=10;s++){for(intw=1;w<=20;w++){for(inte=1;e<=40
- 震惊! “深度学习”都在学习什么
扉间798
深度学习学习人工智能
常见的机器学习分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本,然后将这些弱分类器线性组合成强分类器,提高整体分类性能。(一)投票机制投票是一种直观且常用的算法融合策略。在多分类问题中,假设有多个分类器对同一数据进行分类判断。每个分类器
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- NLP高频面试题(十)——目前常见的几种大模型架构是啥样的
Chaos_Wang_
NLP常见面试题自然语言处理架构人工智能
深入浅出:目前常见的几种大模型架构解析随着Transformer模型的提出与发展,语言大模型迅速崛起,已经成为人工智能领域最为关注的热点之一。本文将为大家详细解析几种目前常见的大模型架构,帮助读者理解其核心差异及适用场景。1.什么是LLM(大语言模型)?LLM通常指参数量巨大、能够捕捉丰富语义信息的Transformer模型,它们通过海量的文本数据训练而成,能够实现高度逼真的文本生成、复杂的语言理
- 最新智能优化算法: 贪婪个体优化算法(Greedy Man Optimization Algorithm,GMOA)求解23个经典函数测试集,MATLAB代码
IT猿手
MATLAB智能优化算法算法matlab开发语言人工智能智能优化算法
一、贪婪个体优化算法贪婪个体优化算法(GreedyManOptimizationAlgorithm,GMOA)是HamedNozari与HosseinAbdi于2024年提出的一种新型受生物启发的元启发式算法,它模拟了抵抗变化的竞争个体的行为。GMOA引入了两个独特的机制:MMO抵抗机制,防止过早替换解;周期性寄生虫清除机制,促进多样性并避免停滞。该算法旨在解决传统优化算法中的过早收敛和缺乏多样性
- 2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3经验分享
摘要随着智能优化算法的不断发展,解决高维、复杂的优化问题已成为研究的重要课题。雪雁算法(SnowGeeseAlgorithm,SGA)作为一种新兴的自然启发式优化算法,以其高效的全局搜索能力受到了广泛关注。然而,雪雁算法在处理多峰、多约束和高维复杂问题时,仍面临收敛速度较慢和易陷入局部最优解的问题。为此,本文提出了一种改进型雪雁算法(ISGA),通过引入自适应权重调整机制和混合局部搜索策略,增强了
- 机器学习 Day01人工智能概述
山北雨夜漫步
机器学习人工智能
1.什么样的程序适合在gpu上运行计算密集型的程序:此类程序主要运算集中在寄存器,寄存器读写速度快,而GPU拥有强大的计算能力,能高效处理大量的寄存器运算,因此适合在GPU上运行。像科学计算中的数值模拟、密码破解等场景的程序,都属于计算密集型,在GPU上运行可大幅提升运算速度。易于并行的程序:GPU采用SIMD架构,有众多核心,同一时间每个核心适合做相同的事。易于并行的程序能充分利用GPU这一特性
- 代码随想录算法训练营Day10 | Leetcode 150逆波兰表达式求值、239滑动窗口最大值、 347前 K 个高频元素
Dominic_Holmes
leetcodepython算法数据结构
代码随想录算法训练营Day10|Leetcode150逆波兰表达式求值、239滑动窗口最大值、347前K个高频元素一、反转字符串相关题目:Leetcode150文档讲解:Leetcode150视频讲解:Leetcode1501.Leetcode150.逆波兰表达式求值给你一个字符串数组tokens,表示一个根据逆波兰表示法表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。注意:有效的
- LeetCode算法题(Go语言实现)_07
LuckyLay
Golang学习笔记算法leetcode职场和发展golang
题目给你一个整数数组nums,返回数组answer,其中answer[i]等于nums中除nums[i]之外其余各元素的乘积。题目数据保证数组nums之中任意元素的全部前缀元素和后缀的乘积都在32位整数范围内。请不要使用除法,且在O(n)时间复杂度内完成此题。一、代码实现funcproductExceptSelf(nums[]int)[]int{n:=len(nums)answer:=make([
- 《今日AI-人工智能-编程日报》-源自2025年3月20日
小亦编辑部
每日AI-人工智能-编程日报人工智能大数据
一、AI行业动态英伟达新一代AI芯片Rubin发布计划英伟达宣布其新一代AI芯片Rubin将于2026年下半年推出,下下一代AI芯片架构命名为Feynman,计划于2028年登场。同时,英伟达还推出了RTXPRO6000系列Blackwell专业卡,拥有24064核心、96GB显存和最高600W功耗。OpenAI星际之门数据中心建设进展OpenAI的首个数据中心“星际之门”预计于2026年中在德克
- 机器学习:让计算机学会思考的艺术
平凡而伟大.
机器学习机器学习人工智能
目录什么是机器学习?机器学习的基本步骤常见的机器学习算法机器学习的实际应用如何入门机器学习?结语在当今数字化时代,机器学习(MachineLearning,ML)已经成为一个炙手可热的话题。从推荐系统到自动驾驶汽车,再到语音助手,机器学习的应用无处不在。然而,对于许多人来说,机器学习仍然是一个神秘而复杂的领域。本文将用通俗易懂的语言,带你走进机器学习的世界,了解它的基本原理和应用。什么是机器学习?
- 机器学习中的 K-均值聚类算法及其优缺点
平凡而伟大.
机器学习机器学习算法均值算法
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成K个簇。其基本原理是将所有样本点划分到K个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。算法流程如下:随机选择K个样本点作为初始的聚类中心。将每个样本点分配到与其最近的聚类中心所在的簇。更新每个簇的聚类中心为该簇所有样本点的平均值。重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。优点:简单且易于实现。
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin